Herein, a combinatorial approach is developed to conduct high‐throughput studies on the nanosecond pulsed laser‐induced dewetting phenomenon of bilayer Ag–Co metallic thin films. Laser irradiation results in the spontaneous rupture of these films in nanosecond timescale, forming bimetallic nanoparticles (NPs) through intermediate stages of hole formation and bicontinuous nanostructures. This approach utilizes bilayer thin films with thickness gradients in both Ag and Co layers (referred to as bigradient samples) while maintaining a constant overall thickness. The laser irradiation on such bigradient bilayer films facilitates control on Ag and Co ratio in the thin films, thus enabling material libraries of Ag–Co NPs covering a large compositional variation. The evolution of NPs with a correlation between NP diameter and interparticle spacings is further studied. The study reveals monotonic increase in NP size and interparticle spacing in Co/Ag bilayer arrangement, while an increase and subsequent decrease in the NP size is observed at 50% Ag in Ag/Co bigradient films. A transition from intermediate stage hole formation to bicontinuous nanostructures with changing composition is also observed. These changes in intermediate stage morphologies and dewetting mechanism are attributed to variation of the free energy of the bilayer system dominated by intermolecular interaction forces. 
                        more » 
                        « less   
                    
                            
                            Creation of Multi‐Principal Element Alloy NiCoCr Nanostructures via Nanosecond Laser‐Induced Dewetting
                        
                    
    
            Abstract The multi‐principal element alloy nanoparticles (MPEA NPs), a new class of nanomaterials, present a highly rewarding opportunity to explore new or vastly different functional properties than the traditional mono/bi/multimetallic nanostructures due to their unique characteristics of atomic‐level homogeneous mixing of constituent elements in the nanoconfinements. Here, the successful creation of NiCoCr nanoparticles, a well‐known MPEA system is reported, using ultrafast nanosecond laser‐induced dewetting of alloy thin films. Nanoparticle formation occurs by spontaneously breaking the energetically unstable thin films in a melt state under laser‐induced hydrodynamic instability and subsequently accumulating in a droplet shape via surface energy minimization. While NiCoCr alloy shows a stark contrast in physical properties compared to individual metallic constituents, i.e., Ni, Co, and Cr, yet the transient nature of the laser‐driven process facilitates a homogeneous distribution of the constituents (Ni, Co, and Cr) in the nanoparticles. Using high‐resolution chemical analysis and scanning nanodiffraction, the environmental stability and grain arrangement in the nanoparticles are further investigated. Thermal transport simulations reveal that the ultrashort (≈100 ns) melt‐state lifetime of NiCoCr during the dewetting event helps retain the constituent elements in a single‐phase solid solution with homogenous distribution and opens the pathway to create the unique MPEA nanoparticles with laser‐induced dewetting process. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2237820
- PAR ID:
- 10497926
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract In an effort to reconcile the various interpretations for the cation components of the 2p3/2observed in x-ray photoelectron spectroscopy (XPS) of several spinel oxide materials, the XPS spectra of both spinel alloy nanoparticles and crystalline thin films are compared. We observed that different components of the 2p3/2core level XPS spectra, of these inverse spinel thin films, are distinctly surface and bulk weighted, indicating surface-to-bulk core level shifts in the binding energies. Surface-to-bulk core level shifts in binding energies of Ni and Fe 2p3/2core levels of NiFe2O4thin film are observed in angle-resolved XPS. The ratio between surface-weighted components and bulk-weighted components of the Ni and Fe core levels shows appreciable dependency on photoemission angle, with respect to surface normal. XPS showed that the ferrite nanoparticles NixCo1−xFe2O4(x= 0.2, 0.5, 0.8, 1) resemble the surface of the NiFe2O4thin film. Surface-to-bulk core level shifts are also observed in CoFe2O4and NiCo2O4thin films but not as significantly as in NiFe2O4thin film. Estimates of surface stoichiometry of some spinel oxide nanoparticles and thin films suggested that the apportionment between cationic species present could be farther from expectations for thin films as compared to what is seen with nanoparticles.more » « less
- 
            null (Ed.)Abstract Electrospray deposition (ESD) applies a high voltage to liquids flowing through narrow capillaries to produce monodisperse generations of droplets down to hundreds of nanometers in diameter, each carrying a small amount of the delivered solute. This deposition method has been combined with insulated stencil masks for fabricating micropatterns by spraying solutions containing nanoparticles, polymers, or biomaterials. To optimize the fabrication process for micro-coatings, a self-limiting electrospray deposition (SLED) method has recently been developed. Here, we combine SLED with a pre-existing patterned polymer film to study SLED’s fundamental behavior in a bilayer geometry. SLED has been observed when glassy insulating materials are sprayed onto conductive substrates, where a thickness-limited film forms as charge accumulates and repels the arrival of additional charged droplets. In this study, polystyrene (PS), Parylene C, and SU-8 thin films of varying thickness on silicon are utilized as insulated spraying substrates. Polyvinylpyrrolidone (PVP), a thermoplastic polymer is sprayed below its glass transition temperature (T g ) to investigate the SLED behavior on the pre-deposited insulating films. Furthermore, to examine the effects of in-plane confinement on the spray, a microhole array patterned onto the PS thin film by laser dewetting was sprayed with dyed PVP in the SLED mode. This was then extended to an unmasked electrode array showing that masked SLED and laser dewetting could be used to target microscale regions of conventionally-patterned electronics.more » « less
- 
            null (Ed.)We report the discovery of a hitherto unreported mechanism of drainage and rupture of micellar foam films that presents unexplored opportunities for understanding and controlling the stability, lifetime and properties of ubiquitous foams. It is well-known that ultrathin micellar foam films exhibit stratification, manifested as stepwise thinning and coexistence of thin–thick flat regions that differ in thickness by a nanoscopic step size equal to the intermicellar distance. Stratification typically involves the spontaneous formation and growth of thinner, darker, circular domains or thicker, brighter mesas. Mechanistically, domain expansion appears similar to hole growth in polymer films undergoing dewetting by nucleation and growth mechanism that can be described by considering metastable states resulting from a thickness-dependent oscillatory free energy. Dewetting polymer films occasionally phase separate into thick and thin regions forming an interconnected, network-like morphology by undergoing spinodal dewetting. However, the formation of thick–thin spinodal patterns has never been reported for freestanding films. In this contribution, we show that the thickness-dependent oscillatory contribution to free energy that arises due to confinement-induced layering of micelles can drive the formation of such thick-thin regions by undergoing a process we term as spinodal stratification. We visualize and characterize the nanoscopic thickness variations and transitions by using IDIOM (interferometry digital imaging optical microscopy) protocols to obtain exquisite thickness maps of freestanding films. We find that evaporation and enhanced drainage in vertical films play a critical role in driving the process, and spinodal stratification can occur in both single foam films and in bulk foam.more » « less
- 
            Creep strength in polycrystalline Ni-based superalloys is influenced by the formation of a rich variety of planar faults forming within the strengthening γ' phase. The lengthening and thickening rate of these faults – and therefore the creep rate – depends on an intriguing combination of dislocation interactions at the γ/γ' interface and diffusional processes of the alloying elements at the core of the fault tip. The effect of alloy composition on this process is not fully understood. In this work we use correlative high resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy to study the deformation faults in two different Ni-based superalloys with carefully designed ratios of disordering-to-ordering-promoting elements (Co-Cr against Nb-Ta-Ti). The results show that the additions of ordering-promoting elements reduce the diffusional processes required for the faults to lengthen and thicken thus reducing the creep rates found for the higher Nb-Ta-Ti alloy. These insights provide a path to follow in the design of improved grades of creep-resistant polycrystalline alloys beyond 700 °C.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
