skip to main content


Search for: All records

Creators/Authors contains: "Sachdev, Subir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider a SU(2) lattice gauge theory on the square lattice, with a single fundamental complex fermion and a single fundamental complex boson on each lattice site. Projective symmetries of the gauge-charged fermions are chosen so that they match with those of the spinons of theπ-flux spin liquid. Global symmetries of all gauge-invariant observables are chosen to match with those of the particle-hole symmetric electronic Hubbard model at half-filling. Consequently, both the fundamental fermion and fundamental boson move in an average backgroundπ-flux, their gauge-invariant composite is the physical electron, and eliminating gauge fields in a strong gauge-coupling expansion yields an effective extended Hubbard model for the electrons. The SU(2) gauge theory displays several confining/Higgs phases: a nodald-wave superconductor, and states with Néel, valence-bond solid, charge, or staggered current orders. There are also a number of quantum phase transitions between these phases that are very likely described by(2+1)-dimensional deconfined conformal gauge theories, and we present large flavor expansions for such theories. These include the phenomenologically attractive case of a transition between a conventional insulator with a charge gap and Néel order, and a conventionald-wave superconductor with gapless Bogoliubov quasiparticles at four nodal points in the Brillouin zone. We also apply our approach to the honeycomb lattice, where we find a bicritical point at the junction of Néel, valence bond solid (Kekulé), and Dirac semimetal phases.

    Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  2. Free, publicly-accessible full text available June 1, 2025
  3. The strange metal phase of correlated electrons materials was described in a recent theory by a model of a Fermi surface coupled a two-dimensional quantum critical bosonic field with a spatially random Yukawa coupling. With the assumption of self-averaging randomness, similar to that in the Sachdev–Ye–Kitaev model, numerous observed properties of a strange metal were obtained for a wide range of intermediate temperatures, including the linear in temperature resistivity. The Harris criterion implies that spatial fluctuations in the local position of the critical point must dominate at lower temperatures. For anM-component boson withM2, we use multiple graphics processing units (GPUs) to compute the real frequency spectrum of the boson propagator in a self-consistent mean-field treatment of the boson self-interactions, but an exact treatment of multiple realizations of the spatial randomness from the random boson mass. We find that Landau damping from the fermions leads to the emergence of the physics of the random transverse-field Ising model at low temperatures, as has been proposed by Hoyos, Kotabage, and Vojta. This regime is controlled by localized overdamped eigenmodes of the bosonic scalar field, also has a resistivity which is nearly linear-in-temperature, and extends into a “quantum critical phase” away from the quantum critical point, as observed in several cuprates. For theM=1Ising scalar, the mean-field treatment is not applicable, and so we use Hybrid Monte Carlo simulations running on multiple GPUs; we find a rounded transition and localization physics, with strange metal behavior in an extended region around the transition.

     
    more » « less
    Free, publicly-accessible full text available April 2, 2025
  4. Free, publicly-accessible full text available June 1, 2025
  5. Free, publicly-accessible full text available February 1, 2025
  6. Abstract

    We model the pseudogap state of the hole- and electron-doped cuprates as a metal with hole and/or electron pocket Fermi surfaces. In the absence of long-range antiferromagnetism, such Fermi surfaces violate the Luttinger requirement of enclosing the same area as free electrons at the same density. Using the Ancilla theory of such a pseudogap state, we describe the onset of conventionald-wave superconductivity by the condensation of a chargeeHiggs boson transforming as a fundamental under the emergent SU(2) gauge symmetry of a backgroundπ-flux spin liquid. In all cases, we find that thed-wave superconductor has gapless Bogoliubov quasiparticles at 4 nodal points on the Brillouin zone diagonals with significant velocity anisotropy, just as in the BCS state. This includes the case of the electron-doped pseudogap metal with only electron pockets centered at wavevectors (π, 0), (0, π), and an electronic gap along the zone diagonals. Remarkably, in this case, too, gapless nodal Bogoliubov quasiparticles emerge within the gap at 4 points along the zone diagonals upon the onset of superconductivity.

     
    more » « less
  7. Free, publicly-accessible full text available July 3, 2025
  8. Free, publicly-accessible full text available December 1, 2024
  9. Abstract

    The superconducting state and mechanism are among the least understood phenomena in twisted graphene systems. Recent tunneling experiments indicate a transition between nodal and gapped pairing with electron filling, which is not naturally understood within current theory. We demonstrate that the coexistence of superconductivity and flavor polarization leads to pairing channels that are guaranteed by symmetry to be entirely band-off-diagonal, with a variety of consequences: most notably, the pairing invariant under all symmetries can have Bogoliubov Fermi surfaces in the superconducting state with protected nodal lines, or may be fully gapped, depending on parameters, and the band-off-diagonal chiralp-wave state exhibits transitions between gapped and nodal regions upon varying the doping. We demonstrate that band-off-diagonal pairing can be the leading state when only phonons are considered, and is also uniquely favored by fluctuations of a time-reversal-symmetric intervalley coherent order motivated by recent experiments. Consequently, band-off-diagonal superconductivity allows for the reconciliation of several key experimental observations in graphene moiré systems.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  10. Free, publicly-accessible full text available November 1, 2024