skip to main content

Search for: All records

Creators/Authors contains: "Sadilek, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Mumbai Suburban Railways, locals, are a key transit infrastructure of the city and is crucial for resuming normal economic activity. Due to high density during transit, the potential risk of disease transmission is high, and the government has taken a wait and see approach to resume normal operations. To reduce disease transmission, policymakers can enforce reduced crowding and mandate wearing of masks. Cohorting – forming groups of travelers that always travel together, is an additional policy to reduce disease transmission on locals without severe restrictions. Cohorting allows us to: (𝑖) form traveler bubbles, thereby decreasing the number of distinctmore »interactions over time; (𝑖𝑖) potentially quarantine an entire cohort if a single case is detected, making contact tracing more efficient, and (𝑖𝑖𝑖) target cohorts for testing and early detection of symptomatic as well as asymptomatic cases. Studying impact of cohorts using compartmental models is challenging because of the ensuing representational complexity. Agent-based models provide a natural way to represent cohorts along with the representation of the cohort members with the larger social network. This paper describes a novel multi-scale agent-based model to study the impact of cohorting strategies on COVID-19 dynamics in Mumbai. We achieve this by modeling the Mumbai urban region using a detailed agent-based model comprising of 12.4 million agents. Individual cohorts and their inter-cohort interactions as they travel on locals are modeled using local mean field approximations. The resulting multi-scale model in conjunction with a detailed disease transmission and intervention simulator is used to assess various cohorting strategies. The results provide a quantitative trade-off between cohort size and its impact on disease dynamics and well being. The results show that cohorts can provide significant benefit in terms of reduced transmission without significantly impacting ridership and or economic & social activity.« less
  2. This work quanti es mobility changes observed during the di erent phases of the pandemic world-wide at multiple resolutions { county, state, country { using an anonymized aggregate mobility map that captures population ows between geographic cells of size 5 km2. As we overlay the global mobility map with epidemic incidence curves and dates of government interventions, we observe that as case counts rose, mobility fell and has since then seen a slow but steady increase in ows. Further, in order to understand mixing within a region, we propose a new metric to quantify the e ect of social distancingmore »on the basis of mobility.Taking two very di erent countries sampled from the global spectrum, We analyze in detail the mobility patterns of the United States (US) and India. We then carry out a counterfactual analysis of delaying the lockdown and show that a one week delay would have doubled the reported number of cases in the US and India. Finally, we quantify the e ect of college students returning back to school for the fall semester on COVID-19 dynamics in the surrounding community. We employ the data from a recent university outbreak (reported on August 16, 2020) to infer possible Re values and mobility ows combined with daily prevalence data and census data to obtain an estimate of new cases that might arrive on a college campus. We nd that maintaining social distancing at existing levels would be e ective in mitigating the extra seeding of cases. However, potential behavioral change and increased social interaction amongst students (30% increase in Re ) along with extra seeding can increase the number of cases by 20% over a period of one month in the encompassing county. To our knowledge, this work is the rst to model in near real-time, the interplay of human mobility, epidemic dynamics and public policies across multiple spatial resolutions and at a global scale.« less