skip to main content


Title: Cohorting to isolate asymptomatic spreaders: An agent-based simulation study on the Mumbai Suburban Railway
The Mumbai Suburban Railways, locals, are a key transit infrastructure of the city and is crucial for resuming normal economic activity. Due to high density during transit, the potential risk of disease transmission is high, and the government has taken a wait and see approach to resume normal operations. To reduce disease transmission, policymakers can enforce reduced crowding and mandate wearing of masks. Cohorting – forming groups of travelers that always travel together, is an additional policy to reduce disease transmission on locals without severe restrictions. Cohorting allows us to: (𝑖) form traveler bubbles, thereby decreasing the number of distinct interactions over time; (𝑖𝑖) potentially quarantine an entire cohort if a single case is detected, making contact tracing more efficient, and (𝑖𝑖𝑖) target cohorts for testing and early detection of symptomatic as well as asymptomatic cases. Studying impact of cohorts using compartmental models is challenging because of the ensuing representational complexity. Agent-based models provide a natural way to represent cohorts along with the representation of the cohort members with the larger social network. This paper describes a novel multi-scale agent-based model to study the impact of cohorting strategies on COVID-19 dynamics in Mumbai. We achieve this by modeling the Mumbai urban region using a detailed agent-based model comprising of 12.4 million agents. Individual cohorts and their inter-cohort interactions as they travel on locals are modeled using local mean field approximations. The resulting multi-scale model in conjunction with a detailed disease transmission and intervention simulator is used to assess various cohorting strategies. The results provide a quantitative trade-off between cohort size and its impact on disease dynamics and well being. The results show that cohorts can provide significant benefit in terms of reduced transmission without significantly impacting ridership and or economic & social activity.  more » « less
Award ID(s):
1918656 1633028 1443054 1916805 2028004 2027541
NSF-PAR ID:
10213749
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
AAMAS Conference proceedings
ISSN:
2523-5699
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The outbreak and emergence of the novel coronavirus (COVID-19) pandemic affected every aspect of human activity, especially the transportation sector. Many cities adopted unprecedented lockdown strategies that resulted in significant nonessential mobility restrictions; hence, transportation network companies (TNCs) have experienced major shifts in their operation. Millions of people alone in the USA have filed for unemployment in the early stage of the COVID-19 outbreak, many belonging to self-employed groups such as Uber/Lyft drivers. Due to unprecedented scenarios, both drivers and passengers experienced overwhelming challenges that might elongate the recovery process. The goal of this study is to understand the risk, response, and challenges associated with ridesharing (TNCs, drivers, and passengers) during the COVID-19 pandemic situation. As such, large-scale crowdsourced data were collected from online ridesharing forums (i.e., Uber Drivers) since the emergence of COVID-19 (January 25–May 10, 2020). Word bigrams, word frequency heatmaps, and topic models are among the different natural language processing and text-mining techniques used to preprocess the data and classify risk perception, risk-taking, or risk-averting behaviors associated with ridesharing during a major disease outbreak. Results indicate higher levels of concern about economic disruption, availability of stimulus checks, new employment opportunities, hospitalization, pandemic, personal hygiene, and staying at home. In addition, unprecedented challenges due to unemployment and the risk and uncertainties in the required personal protective actions against spreading the disease due to sharing are among the major interactions. The proposed text-based data analytics of the ridesharing risk communication dynamics during this pandemic will help to identify unobserved factors inadvertently affecting the TNCs as well as the users (drivers and passengers) and identify more efficient strategies and alternatives for the forthcoming “new normal” of the current pandemic and the ones in the future. The study will also guide us toward understanding how efficiently online social interaction outlets can be designed and implemented more effectively during a major crisis and how to leverage such platforms for providing guidelines during emergencies to minimize transmission of disease due to shared travel. 
    more » « less
  2. COVID-19 pandemic has resulted in an over 60 % reduction in airtravel worldwide according to some estimates. The high economic and public perception costs of potential superspreading during air-travel necessitates research efforts that model, explain and mitigate disease spread. The long-duration exposure to infected passengers and the limited air circulation in the cabin are considered to be responsible for the infection spread during flight. Consequently, recent public health measures are primarily based on these aspects. However, a survey of recent on-flight outbreaks indicates that some aspects of the COVID-19 spread, such as long-distance superspreading, cannot be explained without also considering the movement of people. Another factor that could be influential but has not gained much attention yet is the unpredictable passenger behavior. Here, we use a novel infection risk model that is linked with pedestrian dynamics to accurately capture these aspects of infection spread. The model is parameterized through spatiotemporal analysis of a recent superspreading event in a restaurant in China. The passenger movement during boarding and deplaning, as well as the in-plane movement, are modeled with social force model and agent-based model respectively. We utilize the model to evaluate what-if scenarios on the relative effectiveness of policies and procedures such as masking, social distancing, as well as synergistic effects by combining different approaches in airplanes and other contexts. We find that in certain instances independent strategies can combine synergistically to reduce infection probability, by more than a sum of individual strategies 
    more » « less
  3. Barrera, Roberto (Ed.)
    Arboviruses transmitted by Aedes aegypti (e.g., dengue, chikungunya, Zika) are of major public health concern on the arid coastal border of Ecuador and Peru. This high transit border is a critical disease surveillance site due to human movement-associated risk of transmission. Local level studies are thus integral to capturing the dynamics and distribution of vector populations and social-ecological drivers of risk, to inform targeted public health interventions. Our study examines factors associated with household-level Ae . aegypti presence in Huaquillas, Ecuador, while accounting for spatial and temporal effects. From January to May of 2017, adult mosquitoes were collected from a cohort of households (n = 63) in clusters (n = 10), across the city of Huaquillas, using aspirator backpacks. Household surveys describing housing conditions, demographics, economics, travel, disease prevention, and city services were conducted by local enumerators. This study was conducted during the normal arbovirus transmission season (January—May), but during an exceptionally dry year. Household level Ae . aegypti presence peaked in February, and counts were highest in weeks with high temperatures and a week after increased rainfall. Univariate analyses with proportional odds logistic regression were used to explore household social-ecological variables and female Ae . aegypti presence. We found that homes were more likely to have Ae . aegypti when households had interruptions in piped water service. Ae . aegypti presence was less likely in households with septic systems. Based on our findings, infrastructure access and seasonal climate are important considerations for vector control in this city, and even in dry years, the arid environment of Huaquillas supports Ae . aegypti breeding habitat. 
    more » « less
  4. Abstract

    Mass testing is essential for identifying infected individuals during an epidemic and allowing healthy individuals to return to normal social activities. However, testing capacity is often insufficient to meet global health needs, especially during newly emerging epidemics. Dorfman’s method, a classic group testing technique, helps reduce the number of tests required by pooling the samples of multiple individuals into a single sample for analysis. Dorfman’s method does not consider the time dynamics or limits on testing capacity involved in infection detection, and it assumes that individuals are infected independently, ignoring community correlations. To address these limitations, we present an adaptive group testing (AGT) strategy based on graph partitioning, which divides a physical contact network into subgraphs (groups of individuals) and assigns testing priorities based on the social contact characteristics of each subgraph. Our AGT aims to maximize the number of infected individuals detected and minimize the number of tests required. After each testing round (perhaps on a daily basis), the testing priority is increased for each neighboring group of known infected individuals. We also present an enhanced infectious disease transmission model that simulates the dynamic spread of a pathogen and evaluate our AGT strategy using the simulation results. When applied to 13 social contact networks, AGT demonstrates significant performance improvements compared to Dorfman’s method and its variations. Our AGT strategy requires fewer tests overall, reduces disease spread, and retains robustness under changes in group size, testing capacity, and other parameters. Testing plays a crucial role in containing and mitigating pandemics by identifying infected individuals and helping to prevent further transmission in families and communities. By identifying infected individuals and helping to prevent further transmission in families and communities, our AGT strategy can have significant implications for public health, providing guidance for policymakers trying to balance economic activity with the need to manage the spread of infection.

     
    more » « less
  5. null (Ed.)
    School closures may reduce the size of social networks among children, potentially limiting infectious disease transmission. To estimate the impact of K–12 closures and reopening policies on children's social interactions and COVID-19 incidence in California's Bay Area, we collected data on children's social contacts and assessed implications for transmission using an individual-based model. Elementary and Hispanic children had more contacts during closures than high school and non-Hispanic children, respectively. We estimated that spring 2020 closures of elementary schools averted 2167 cases in the Bay Area (95% CI: −985, 5572), fewer than middle (5884; 95% CI: 1478, 11.550), high school (8650; 95% CI: 3054, 15 940) and workplace (15 813; 95% CI: 9963, 22 617) closures. Under assumptions of moderate community transmission, we estimated that reopening for a four-month semester without any precautions will increase symptomatic illness among high school teachers (an additional 40.7% expected to experience symptomatic infection, 95% CI: 1.9, 61.1), middle school teachers (37.2%, 95% CI: 4.6, 58.1) and elementary school teachers (4.1%, 95% CI: −1.7, 12.0). However, we found that reopening policies for elementary schools that combine universal masking with classroom cohorts could result in few within-school transmissions, while high schools may require masking plus a staggered hybrid schedule. Stronger community interventions (e.g. remote work, social distancing) decreased the risk of within-school transmission across all measures studied, with the influence of community transmission minimized as the effectiveness of the within-school measures increased. 
    more » « less