skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cohorting to isolate asymptomatic spreaders: An agent-based simulation study on the Mumbai Suburban Railway
The Mumbai Suburban Railways, locals, are a key transit infrastructure of the city and is crucial for resuming normal economic activity. Due to high density during transit, the potential risk of disease transmission is high, and the government has taken a wait and see approach to resume normal operations. To reduce disease transmission, policymakers can enforce reduced crowding and mandate wearing of masks. Cohorting – forming groups of travelers that always travel together, is an additional policy to reduce disease transmission on locals without severe restrictions. Cohorting allows us to: (𝑖) form traveler bubbles, thereby decreasing the number of distinct interactions over time; (𝑖𝑖) potentially quarantine an entire cohort if a single case is detected, making contact tracing more efficient, and (𝑖𝑖𝑖) target cohorts for testing and early detection of symptomatic as well as asymptomatic cases. Studying impact of cohorts using compartmental models is challenging because of the ensuing representational complexity. Agent-based models provide a natural way to represent cohorts along with the representation of the cohort members with the larger social network. This paper describes a novel multi-scale agent-based model to study the impact of cohorting strategies on COVID-19 dynamics in Mumbai. We achieve this by modeling the Mumbai urban region using a detailed agent-based model comprising of 12.4 million agents. Individual cohorts and their inter-cohort interactions as they travel on locals are modeled using local mean field approximations. The resulting multi-scale model in conjunction with a detailed disease transmission and intervention simulator is used to assess various cohorting strategies. The results provide a quantitative trade-off between cohort size and its impact on disease dynamics and well being. The results show that cohorts can provide significant benefit in terms of reduced transmission without significantly impacting ridership and or economic & social activity.  more » « less
Award ID(s):
1918656 1633028 1443054 1916805 2028004 2027541
PAR ID:
10213749
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
AAMAS Conference proceedings
ISSN:
2523-5699
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Barrera, Roberto (Ed.)
    Arboviruses transmitted by Aedes aegypti (e.g., dengue, chikungunya, Zika) are of major public health concern on the arid coastal border of Ecuador and Peru. This high transit border is a critical disease surveillance site due to human movement-associated risk of transmission. Local level studies are thus integral to capturing the dynamics and distribution of vector populations and social-ecological drivers of risk, to inform targeted public health interventions. Our study examines factors associated with household-level Ae . aegypti presence in Huaquillas, Ecuador, while accounting for spatial and temporal effects. From January to May of 2017, adult mosquitoes were collected from a cohort of households (n = 63) in clusters (n = 10), across the city of Huaquillas, using aspirator backpacks. Household surveys describing housing conditions, demographics, economics, travel, disease prevention, and city services were conducted by local enumerators. This study was conducted during the normal arbovirus transmission season (January—May), but during an exceptionally dry year. Household level Ae . aegypti presence peaked in February, and counts were highest in weeks with high temperatures and a week after increased rainfall. Univariate analyses with proportional odds logistic regression were used to explore household social-ecological variables and female Ae . aegypti presence. We found that homes were more likely to have Ae . aegypti when households had interruptions in piped water service. Ae . aegypti presence was less likely in households with septic systems. Based on our findings, infrastructure access and seasonal climate are important considerations for vector control in this city, and even in dry years, the arid environment of Huaquillas supports Ae . aegypti breeding habitat. 
    more » « less
  2. null (Ed.)
    Public transit is central to cultivating equitable communities. Meanwhile, the novel coronavirus disease COVID-19 and associated social restrictions has radically transformed ridership behavior in urban areas. Perhaps the most concerning aspect of the COVID-19 pandemic is that low-income and historically marginalized groups are not only the most susceptible to economic shifts but are also most reliant on public transportation. As revenue decreases, transit agencies are tasked with providing adequate public transportation services in an increasingly hostile economic environment. Transit agencies therefore have two primary concerns. First, how has COVID-19 impacted ridership and what is the new post-COVID normal? Second, how has ridership varied spatio-temporally and between socio-economic groups? In this work we provide a data-driven analysis of COVID-19’s affect on public transit operations and identify temporal variation in ridership change. We then combine spatial distributions of ridership decline with local economic data to identify variation between socio-economic groups. We find that in Nashville and Chattanooga, TN, fixed-line bus ridership dropped by 66.9% and 65.1% from 2019 baselines before stabilizing at 48.4% and 42.8% declines respectively. The largest declines were during morning and evening commute time. Additionally, there was a significant difference in ridership decline between the highest-income areas and lowest-income areas (77% vs 58%) in Nashville. 
    more » « less
  3. null (Ed.)
    Public transit is central to cultivating equitable communities. Meanwhile, the novel coronavirus disease COVID-19 and associated social restrictions has radically transformed ridership behavior in urban areas. Perhaps the most concerning aspect of the COVID-19 pandemic is that low-income and historically marginalized groups are not only the most susceptible to economic shifts but are also most reliant on public transportation. As revenue decreases, transit agencies are tasked with providing adequate public transportation services in an increasingly hostile economic environment. Transit agencies therefore have two primary concerns. First, how has COVID-19 impacted ridership and what is the new post-COVID normal? Second, how has ridership varied spatio-temporally and between socio-economic groups? In this work we provide a data-driven analysis of COVID-19’s affect on public transit operations and identify temporal variation in ridership change. We then combine spatial distributions of ridership decline with local economic data to identify variation between socio-economic groups. We find that in Nashville and Chattanooga, TN, fixed-line bus ridership dropped by 66.9% and 65.1% from 2019 baselines before stabilizing at 48.4% and 42.8% declines respectively. The largest declines were during morning and evening commute time. Additionally, there was a significant difference in ridership decline between the highest-income areas and lowest-income areas (77% vs 58%) in Nashville. 
    more » « less
  4. The outbreak of coronavirus disease 2019 (COVID-19) has led to significant challenges for schools and communities during the pandemic, requiring policy makers to ensure both safety and operational feasibility. In this paper, we develop mixed-integer programming models and simulation tools to redesign routes and bus schedules for operating a real university campus bus system during the COVID-19 pandemic. We propose a hub-and-spoke design and utilize real data of student activities to identify hub locations and bus stops to be used in the new routes. To reduce disease transmission via expiratory aerosol, we design new bus routes that are shorter than 15 minutes to travel and operate using at most 50% seat capacity and the same number of buses before the pandemic. We sample a variety of scenarios that cover variations of peak demand, social distancing requirements, and bus breakdowns to demonstrate the system resiliency of the new routes and schedules via simulation. The new bus routes were implemented and used during the academic year 2020–2021 to ensure social distancing and short travel time. Our approach can be generalized to redesign public transit systems with a social distancing requirement to reduce passengers’ infection risk. History: This paper was refereed. This article has been selected for inclusion in the Special Issue on Analytics Remedies to COVID-19. Funding: This work was supported by the National Science Foundation [Grant CMMI-2041745] and the University of Michigan, College of Engineering. 
    more » « less
  5. Abstract The impact of engineered products is a topic of concern in society. Product impact may fall under the categories of economic, environmental or social impact, with the last category defined as the effect of a product on the day-to-day life of people. Design teams lack sufficient tools to estimate the social impact of products, and the combined impacts of economic, environmental and social impacts for the products they are designing. This paper aims to provide a framework for the estimation of product impact during product design. To estimate product impact, models of both the product and society are required. This framework integrates models of the product, scenario, society and impact into an agent-based model to estimate product impact. Although this paper demonstrates the framework using only social impact, the framework can also be applied to economic or environmental impacts individually or all three concurrently. Agent-based modelling has been used previously for product adoption models, but it has not been extended to estimate product impact. Having tools for impact estimation allows for optimising the product design parameters to increase the potential positive impact and reduce potential negative impact. 
    more » « less