skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Sagear, Sheila"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We describe the Perkins INfrared Exosatellite Survey (PINES), a near-infrared photometric search for short-period transiting planets and moons around a sample of 393 spectroscopically confirmed L- and T-type dwarfs. PINES is performed with Boston University’s 1.8 m Perkins Telescope Observatory, located on Anderson Mesa, Arizona. We discuss the observational strategy of the survey, which was designed to optimize the number of expected transit detections, and describe custom automated observing procedures for performing PINES observations. We detail the steps of the PINES Analysis Toolkit ( PAT ), software that is used to create light curves from PINES images. We assess the impact of second-order extinction due to changing precipitable water vapor on our observations and find that the magnitude of this effect is minimized in Mauna Kea Observatories J band. We demonstrate the validity of PAT through the recovery of a transit of WASP-2 b and known variable brown dwarfs, and use it to identify a new variable L/T transition object: the T2 dwarf WISE J045746.08-020719.2. We report on the measured photometric precision of the survey and use it to estimate our transit-detection sensitivity. We find that for our median brightness targets, assuming contributions from white noise only, we are sensitive to the detection of 2.5 R ⊕ planets and larger. PINES will test whether the increase in sub-Neptune-sized planet occurrence with decreasing host mass continues into the L- and T-dwarf regime. 
    more » « less
  2. Bennett, M ; Wolf, S. ; Frank, B. W. (Ed.)
    Computer simulations for physics labs may be combined with hands-on lab equipment to boost student understanding and make labs more accessible. Hybrid labs of HTML5-based computer simulations and hands-on lab equipment for topics in mechanics were investigated in a large, algebra-based, studio physics course for life science students at a private, research-intensive institution. Computer simulations were combined with hands-on equipment and compared to traditional hands-on labs using an A/B testing protocol. Learning outcomes were measured for the specific topic of momentum conservation by comparing student scores on post-lab exercises, related quiz and exam questions, and a subset of questions on the Energy and Momentum Conceptual Survey (EMCS) administered before and after instruction for both groups. We find that students who completed a hands-on lab vs. a hybrid lab showed no difference in performance on momentum assessments. 
    more » « less