- Award ID(s):
- 1712159
- PAR ID:
- 10291756
- Editor(s):
- Bennett, M; Wolf, S.; Frank, B. W.
- Date Published:
- Journal Name:
- 2020 Physics Education Research Conference Proceedings
- Page Range / eLocation ID:
- 448 to 453
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Seagroves, Scott ; Barnes, Austin ; Metevier, Anne ; Porter, Jason ; Hunter, Lisa (Ed.)We present highlights from a series of hands-on physics lab modules developed for remote teaching. The labs were composed of multiple self-guided inquiry modules. Though the labs were developed from scratch, some modules that were central to the design process were borrowed from previous PDP sessions and the guiding PDP principles of mirroring authentic Science, Technology, Engineering, and Mathematics (STEM) practices (e.g., allowing students to raise questions and take ownership of decision making). One notable aspect of this work is that by sourcing and assembling low-cost ($25 per student) lab kits that were sent to each student, the majority of the modules were hands-on despite being fully online. Combining online resources and simulation tools with individual hardware kits and small lab groups allowed for a mix of synchronous and asynchronous exploration. This mixed lab mode was successful in promoting both inquiry exploration and community building. One example of a lab design choice aimed at overcoming online barriers was that in lieu of weekly lab write-ups, groups submitted video checkouts in which students were encouraged to reflect on the lab, self-assess their learning outcomes, and highlight unique aspects of their lab experience. This lab was specifically developed in response to the unforeseen challenges of online teaching; however, multiple aspects of the course will seamlessly transfer to an in-person lab setting.more » « less
-
Frank, Brian W. ; Jones, Dyan L. ; Ryan, Qing X. (Ed.)While understanding laboratory equipment is an important learning goal of physics laboratory (lab) instruction, previous studies have found inequities as to who gets to use equipment in in-person lab classes. With the transition to remote learning during the COVID-19 pandemic, class dynamics changed and the effects on equipment usage remain unclear. As part of a larger effort to make intro physics labs more equitable, we investigated student equipment usage based on gender and race in two introductory physics lab courses, one taught in-person and one taught remotely. We found inequities between men and women for in-person instruction, replicating previous work with a new student population. In contrast, we found that remote instruction created a more gender equitable learning environment, albeit with one student typically in charge of the equipment per class session. When we looked at equipment handling based on student race, we found no inequities in either format. These results suggest that changes should be made in introductory labs to create a more gender equitable learning environment and that some aspects of remote labs could help make these labs more equitable.more » « less
-
This Innovate Practice full paper presents a cloud-based personalized learning lab platform. Personalized learning is gaining popularity in online computer science education due to its characteristics of pacing the learning progress and adapting the instructional approach to each individual learner from a diverse background. Among various instructional methods in computer science education, hands-on labs have unique requirements of understanding learner's behavior and assessing learner's performance for personalization. However, it is rarely addressed in existing research. In this paper, we propose a personalized learning platform called ThoTh Lab specifically designed for computer science hands-on labs in a cloud environment. ThoTh Lab can identify the learning style from student activities and adapt learning material accordingly. With the awareness of student learning styles, instructors are able to use techniques more suitable for the specific student, and hence, improve the speed and quality of the learning process. With that in mind, ThoTh Lab also provides student performance prediction, which allows the instructors to change the learning progress and take other measurements to help the students timely. For example, instructors may provide more detailed instructions to help slow starters, while assigning more challenging labs to those quick learners in the same class. To evaluate ThoTh Lab, we conducted an experiment and collected data from an upper-division cybersecurity class for undergraduate students at Arizona State University in the US. The results show that ThoTh Lab can identify learning style with reasonable accuracy. By leveraging the personalized lab platform for a senior level cybersecurity course, our lab-use study also shows that the presented solution improves students engagement with better understanding of lab assignments, spending more effort on hands-on projects, and thus greatly enhancing learning outcomes.more » « less
-
Following the outbreak of COVID-19, conducting lab classes emerged as a major challenge. Just switching to remote only mode with virtual experiments and simulations was very limiting for both the instructors and the students. At an historically black university, an approach that integrated the hands-on experiments enriched by simulation resources with virtual follow up was adopted. The key advantages of this approach were access to equipment, flexibility on when and how experiments are conducted, and the curiosity driven engagement fostered. Though this approach lacks the in-person one-on-one engagement and use of specialized equipment in the lab, it established a different and, in some aspect, deeper student engagement. Development of troubleshooting skills and the confidence in setting experiments are a few key observations. In this study, we present a comparison of the efficacy of such remote integrated modes of conducting Physics experiments with in-person in laboratory teaching of undergraduate students, who are enrolled in the Introduction to Physics Experiment course participated at Morgan State University. We conclude that these two approaches are complementary to one another.more » « less
-
This paper presents and discusses the use of simulation-based customizable online learning activities, virtual laboratories, and comprehensive e-Learning environments for teaching subjects such as materials science, chemistry, and biomanufacturing. The virtual equipment and lab assignments have been used for: (i) authentic online experimentation, (ii) homework and control assignments with traditional and blended courses, (iii) preparing students for hands-on work in real labs, (iv) lecture demonstrations, and (v) performance-based assessment of students’ ability to apply gained theoretical knowledge for operating actual equipment and solving practical problems. Using the associated learning and content management system (LCMS) and authoring tools, instructors kept track of student performance and designed new virtual experiments and more personalized learning assignments for students. Virtual X-Ray Laboratory and Web-based Environment for Single-Use Upstream Bioprocessing have been used to illustrate the implementation of the concept of Interactive and Adjustable Cloud-based e-Learning Tools. The virtual labs and e-learning environments have been used at two-year and four-year colleges and universities in the USA, UK, Tanzania and some other countries. The virtual X-Ray lab has also been integrated with the MITx course delivered via the MOOC (massive open online course) edX platform for Massachusetts Institute of Technology undergraduate students.