Machine learning at the extreme edge has enabled a plethora of intelligent, time-critical, and remote applications. However, deploying interpretable artificial intelligence systems that can perform high-level symbolic reasoning and satisfy the underlying system rules and physics within the tight platform resource constraints is challenging. In this paper, we introduce
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
TinyNS , the first platform-aware neurosymbolic architecture search framework for joint optimization of symbolic and neural operators.TinyNS provides recipes and parsers to automatically write microcontroller code for five types of neurosymbolic models, combining the context awareness and integrity of symbolic techniques with the robustness and performance of machine learning models.TinyNS uses a fast, gradient-free, black-box Bayesian optimizer over discontinuous, conditional, numeric, and categorical search spaces to find the best synergy of symbolic code and neural networks within the hardware resource budget. To guarantee deployability,TinyNS talks to the target hardware during the optimization process. We showcase the utility ofTinyNS by deploying microcontroller-class neurosymbolic models through several case studies. In all use cases,TinyNS outperforms purely neural or purely symbolic approaches while guaranteeing execution on real hardware. -
Inertial navigation provides a small footprint, low-power, and low-cost pathway for localization in GPS-denied environments on extremely resource-constrained Internet-of-Things (IoT) platforms. Traditionally, application-specific heuristics and physics-based kinematic models are used to mitigate the curse of drift in inertial odometry. These techniques, albeit lightweight, fail to handle domain shifts and environmental non-linearities. Recently, deep neural-inertial sequence learning has shown superior odometric resolution in capturing non-linear motion dynamics without human knowledge over heuristic-based methods. These AI-based techniques are data-hungry, suffer from excessive resource usage, and cannot guarantee following the underlying system physics. This paper highlights the unique methods, opportunities, and challenges in porting real-time AI-enhanced inertial navigation algorithms onto IoT platforms. First, we discuss how platform-aware neural architecture search coupled with ultra-lightweight model backbones can yield neural-inertial odometry models that are 31–134 x smaller yet achieve or exceed the localization resolution of state-of-the-art AI-enhanced techniques. The framework can generate models suitable for locating humans, animals, underwater sensors, aerial vehicles, and precision robots. Next, we showcase how techniques from neurosymbolic AI can yield physics-informed and interpretable neural-inertial navigation models. Afterward, we present opportunities for fine-tuning pre-trained odometry models in a new domain with as little as 1 minute of labeled data, while discussing inexpensive data collection and labeling techniques. Finally, we identify several open research challenges that demand careful consideration moving forward.more » « less
-
Precision agricultural robots require high-resolution navigation solutions. In this paper, we introduce a robust neural-inertial sequence learning approach to track such robots with ultra-intermittent GNSS updates. First, we propose an ultra-lightweight neural-Kalman filter that can track agricultural robots within 1.4 m (1.4–5.8× better than competing techniques), while tracking within 2.75 m with 20 mins of GPS outage. Second, we introduce a user-friendly video-processing toolbox to generate high-resolution (±5 cm) position data for fine-tuning pre-trained neural-inertial models in the field. Third, we introduce the first and largest (6.5 hours, 4.5 km, 3 phases) public neural-inertial navigation dataset for precision agricultural robots. The dataset, toolbox, and code are available at: https://github.com/nesl/agrobot.more » « less
-
Deep inertial sequence learning has shown promising odometric resolution over model-based approaches for trajectory estimation in GPS-denied environments. However, existing neural inertial dead-reckoning frameworks are not suitable for real-time deployment on ultra-resource-constrained (URC) devices due to substantial memory, power, and compute bounds. Current deep inertial odometry techniques also suffer from gravity pollution, high-frequency inertial disturbances, varying sensor orientation, heading rate singularity, and failure in altitude estimation. In this paper, we introduce TinyOdom, a framework for training and deploying neural inertial models on URC hardware. TinyOdom exploits hardware and quantization-aware Bayesian neural architecture search (NAS) and a temporal convolutional network (TCN) backbone to train lightweight models targetted towards URC devices. In addition, we propose a magnetometer, physics, and velocity-centric sequence learning formulation robust to preceding inertial perturbations. We also expand 2D sequence learning to 3D using a model-free barometric g-h filter robust to inertial and environmental variations. We evaluate TinyOdom for a wide spectrum of inertial odometry applications and target hardware against competing methods. Specifically, we consider four applications: pedestrian, animal, aerial, and underwater vehicle dead-reckoning. Across different applications, TinyOdom reduces the size of neural inertial models by 31× to 134× with 2.5m to 12m error in 60 seconds, enabling the direct deployment of models on URC devices while still maintaining or exceeding the localization resolution over the state-of-the-art. The proposed barometric filter tracks altitude within ±0.1m and is robust to inertial disturbances and ambient dynamics. Finally, our ablation study shows that the introduced magnetometer, physics, and velocity-centric sequence learning formulation significantly improve localization performance even with notably lightweight models.more » « less
-
Auritus is an extendable and open-source optimization toolkit designed to enhance and replicate earable applications. Auritus serves two primary functions. Firstly, Auritus handles data collection, pre-processing, and labeling tasks for creating customized earable datasets using graphical tools. The system includes an open-source dataset with 2.43 million inertial samples related to head and full-body movements, consisting of 34 head poses and 9 activities from 45 volunteers. Secondly, Auritus provides a tightly-integrated hardware-in-the-loop (HIL) optimizer and TinyML interface to develop lightweight and real-time machine-learning (ML) models for activity detection and filters for head-pose tracking. Auritus recognizes activities with 91% leave 1-out test accuracy (98% test accuracy) using real-time models as small as 6-13 kB. Our models are 98-740 × smaller and 3-6% more accurate over the state-of-the-art. We also estimate head pose with absolute errors as low as 5 degrees using 20kB filters, achieving up to 1.6 × precision improvement over existing techniques. Auritus is available at https://github.com/nesl/auritus.more » « less
-
Smart ear-worn devices (called earables) are being equipped with various onboard sensors and algorithms, transforming earphones from simple audio transducers to multi-modal interfaces making rich inferences about human motion and vital signals. However, developing sensory applications using earables is currently quite cumbersome with several barriers in the way. First, time-series data from earable sensors incorporate information about physical phenomena in complex settings, requiring machine-learning (ML) models learned from large-scale labeled data. This is challenging in the context of earables because large-scale open-source datasets are missing. Secondly, the small size and compute constraints of earable devices make on-device integration of many existing algorithms for tasks such as human activity and head-pose estimation difficult. To address these challenges, we introduce Auritus, an extendable and open-source optimization toolkit designed to enhance and replicate earable applications. Auritus serves two primary functions. Firstly, Auritus handles data collection, pre-processing, and labeling tasks for creating customized earable datasets using graphical tools. The system includes an open-source dataset with 2.43 million inertial samples related to head and full-body movements, consisting of 34 head poses and 9 activities from 45 volunteers. Secondly, Auritus provides a tightly-integrated hardware-in-the-loop (HIL) optimizer and TinyML interface to develop lightweight and real-time machine-learning (ML) models for activity detection and filters for head-pose tracking. To validate the utlity of Auritus, we showcase three sample applications, namely fall detection, spatial audio rendering, and augmented reality (AR) interfacing. Auritus recognizes activities with 91% leave 1-out test accuracy (98% test accuracy) using real-time models as small as 6-13 kB. Our models are 98-740x smaller and 3-6% more accurate over the state-of-the-art. We also estimate head pose with absolute errors as low as 5 degrees using 20kB filters, achieving up to 1.6x precision improvement over existing techniques. We make the entire system open-source so that researchers and developers can contribute to any layer of the system or rapidly prototype their applications using our dataset and algorithms.more » « less
-
Machine learning (ML) classifiers are widely adopted in the learning-enabled components of intelligent Cyber-physical Systems (CPS) and tools used in designing integrated circuits. Due to the impact of the choice of hyperparameters on an ML classifier performance, hyperparameter tuning is a crucial step for application success. However, the practical adoption of existing hyperparameter tuning frameworks in production is hindered due to several factors such as inflexible architecture, limitations of search algorithms, software dependencies, or closed source nature. To enable state-of-the-art hyperparameter tuning in production, we propose the design of a lightweight library (1) having a flexible architecture facilitating usage on arbitrary systems, and (2) providing parallel optimization algorithms supporting mixed parameters (continuous, integer, and categorical), handling runtime failures, and allowing combined classifier selection and hyperparameter tuning (CASH). We present Mango, a black-box optimization library, to realize the proposed design. Mango is currently used in production at Arm for more than 25 months and is available open-source (https://github.com/ARM-software/mango). Our evaluation shows that Mango outperforms other black-box optimization libraries in tuning hyperparameters of ML classifiers having mixed param-eter search spaces. We discuss two use cases of Mango deployed in production at Arm, highlighting its flexible architecture and ease of adoption. The first use case trains ML classifiers on the Dask cluster using Mango to find bugs in Arm's integrated circuits designs. As a second use case, we introduce an AutoML framework deployed on the Kubernetes cluster using Mango. Finally, we present the third use-case of Mango in enabling neural architecture search (NAS) to transfer deep neural networks to TinyML platforms (microcontroller class devices) used by CPS/IoT applications.more » « less