skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sahasrabudhe, Himanshu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Recent advances in the processing of wear-resistant calcium-phosphate reinforced CoCrMo composites for articulating surface applications has necessitated further investigation of performance in biological conditions relevant to patient applications. To this end, CoCrMo composites containing calcium phosphate in the form of hydroxyapatite (HA) were manufactured to study the influence of the reinforcing phase on the tribofilm formation in biologically-relevant conditions. The CoCrMo-HA composites were processed using a laser engineered net shaping (LENS™) additive manufacturing (AM) system with three distinctive compositions: CoCrMo-0%HA, CoCrMo-1%HA, and CoCrMo-3%HA. Extensive wear testing of the CoCrMo-HA composites was carried out in DMEM (cell media) and DMEM + Hyaluronic acid (found naturally in synovial fluid). Wear tests were performed at loads ranging from 5N to 20N, and wear media was measured post-test using ICP-MS techniques for the release of Co and Cr ions. During testing, all coefficients of friction remained in the 0.15-0.25 range, which was lower than the previously reported 0.50-0.75 range in DI water, indicating that the DMEM + hyaluronic acid media plays a significant role in reducing frictional contact. At loads higher than 15N, the HA-tribofilm exhibited a breakdown resulting in higher wear rates but still lower overall ion release in comparison to the CoCrMo control composition. Our results indicate that CoCrMo alloys with HA addition can significantly reduce wear rates and ion release even in the presence of naturally-occurring synovial-fluid friction-reducing constituents. 
    more » « less