skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sahleen, Jackson"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. FPGAs are increasingly being used in space and other harsh radiation environments. However, SRAM-based FPGAs are susceptible to radiation in these environments and experience upsets within the configuration memory (CRAM), causing design failure. The effects of CRAM upsets can be mitigated using triple-modular redundancy and configuration scrubbing. This work investigates the reliability of a soft RISC-V SoC system executing the Linux operating system mitigated by TMR and configuration scrubbing. In particular, this paper analyzes the failures of this triplicated system observed at a high-energy neutron radiation experiment. Using a bitstream fault analysis tool, the failures of this system caused by CRAM upsets are traced back to the affected FPGA resource and design logic. This fault analysis identifies the interconnect and I/O as the most vulnerable FPGA resources and the DDR controller logic as the design logic most likely to cause a failure. By identifying the FPGA resources and design logic causing failures in this TMR system, additional design enhancements are proposed to create a more reliable design for harsh radiation environments. 
    more » « less