skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Saito, Masanori"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Most global aerosol models approximate dust as sphericalparticles, whereas most remote sensing retrieval algorithms approximate dust as spheroidal particles with a shape distribution that conflicts withmeasurements. These inconsistent and inaccurate shape assumptions generatebiases in dust single-scattering properties. Here, we obtain dustsingle-scattering properties by approximating dust as triaxial ellipsoidalparticles with observationally constrained shape distributions. We findthat, relative to the ellipsoidal dust optics obtained here, the sphericaldust optics used in most aerosol models underestimate dust single-scattering albedo, mass extinction efficiency, and asymmetry parameter for almost all dust sizes in both the shortwave and longwave spectra. We further find that the ellipsoidal dust optics are in substantially better agreement with observations of the scattering matrix and linear depolarization ratio than the spheroidal dust optics used in most retrieval algorithms. However, relative to observations, the ellipsoidal dust optics overestimate the lidar ratio by underestimating the backscattering intensity by a factor of ∼2. This occurs largely because the computational method used to simulate ellipsoidal dust optics (i.e., the improved geometric optics method) underestimates the backscattering intensity by a factor of ∼2 relative to other computational methods (e.g., the physical geometric optics method). We conclude that the ellipsoidal dust optics with observationally constrained shape distributions can help improve global aerosol models and possibly remote sensing retrieval algorithms that do not use the backscattering signal. 
    more » « less
  2. Abstract Sensitivities of the backscattering properties to the microphysical properties (in particular, size and shape) of mineral dust aerosols are examined based on TAMUdust2020, a comprehensive single‐scattering property database of irregular aerosol particles. We develop the bulk mineral dust particle models based on size‐resolved particle ensembles with randomly distorted shapes and spectrally resolved complex refractive indices, which are constrained by using in situ observations reported in the literature. The light detection and ranging (lidar) ratio is more sensitive to particle shape than particle size, while the depolarization ratio depends strongly on particle size. The simulated bulk backscattering properties (i.e., the lidar ratio and the depolarization ratio) of typical mineral dust particles with effective radii of 0.5–3 µm are reasonably consistent with lidar observations made during several field campaigns. The present dust bulk optical property models are applicable to lidar‐based remote sensing of dust aerosol properties. 
    more » « less
  3. Abstract A database (TAMUoic2019) of the scattering, absorption, and polarization properties of horizontally oriented hexagonal plates (HOPs) and horizontally oriented hexagonal columns (HOCs) at three wavelengths (355, 532, and 1064 nm) is developed for applications to radiative transfer simulations and remote sensing implementations involving oriented ice crystals. The maximum dimension of oriented ice crystals ranges from 50 to 10 000 μm in 165 discrete size bins. The database accounts for 94 incident directions. The single-scattering properties of oriented ice crystals are computed with the physical-geometric optics method (PGOM), which is consistent with the invariant-imbedding T-matrix method for particles with size parameters larger than approximately 100–150. Note that the accuracy of PGOM increases as the size parameter increases. PGOM computes the two-dimensional phase matrix as a function of scattering polar and azimuth angles, and the phase matrix significantly varies with the incident direction. To derive the bulk optical properties of ice clouds for practical radiative transfer applications, the optical properties of individual HOPs and HOCs are averaged over the probability distribution of the tilting angle of oriented ice crystals based on the use of the TAMUoic2019 database. Simulations of lidar signals associated with ice clouds based on the bulk optical properties indicate the importance of the fraction of oriented ice crystals and the probability distribution of the tilting angle. Simulations of optical phenomena caused by oriented ice crystals demonstrate that the computed single-scattering properties of oriented ice crystals are physically rational. 
    more » « less