Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract When the scientific dataset evolves or is reused in workflows creating derived datasets, the integrity of the dataset with its metadata information, including provenance, needs to be securely preserved while providing assurances that they are not accidentally or maliciously altered during the process. Providing a secure method to efficiently share and verify the data as well as metadata is essential for the reuse of the scientific data. The National Science Foundation (NSF) funded Open Science Chain (OSC) utilizes consortium blockchain to provide a cyberinfrastructure solution to maintain integrity of the provenance metadata for published datasets and provides a way to perform independent verification of the dataset while promoting reuse and reproducibility. The NSF- and National Institutes of Health (NIH)-funded Neuroscience Gateway (NSG) provides a freely available web portal that allows neuroscience researchers to execute computational data analysis pipeline on high performance computing resources. Combined, the OSC and NSG platforms form an efficient, integrated framework to automatically and securely preserve and verify the integrity of the artifacts used in research workflows while using the NSG platform. This paper presents the results of the first study that integrates OSC–NSG frameworks to track the provenance of neurophysiological signal data analysis to study brain network dynamics using the Neuro-Integrative Connectivity tool, which is deployed in the NSG platform. Database URL: https://www.opensciencechain.org.more » « less
-
Abstract We measure the 3D kinematic structures of the young stars within the central 0.5 pc of our Galactic Center using the 10 m telescopes of the W. M. Keck Observatory over a time span of 25 yr. Using high-precision measurements of positions on the sky and proper motions and radial velocities from new observations and the literature, we constrain the orbital parameters for each young star. Our results show two statistically significant substructures: a clockwise stellar disk with 18 candidate stars, as has been proposed before, but with an improved disk membership; and a second, almost edge-on plane of 10 candidate stars oriented east–west on the sky that includes at least one IRS 13 star. We estimate the eccentricity distribution of each substructure and find that the clockwise disk has 〈e〉 = 0.39 and the edge-on plane has 〈e〉 = 0.68. We also perform simulations of each disk/plane with incompleteness and spatially variable extinction to search for asymmetry. Our results show that the clockwise stellar disk is consistent with a uniform azimuthal distribution within the disk. The edge-on plane has an asymmetry that cannot be explained by variable extinction or incompleteness in the field. The orientation, asymmetric stellar distribution, and high eccentricity of the edge-on plane members suggest that this structure may be a stream associated with the IRS 13 group. The complex dynamical structure of the young nuclear cluster indicates that the star formation process involved complex gas structures and dynamics and is inconsistent with a single massive gaseous disk.more » « less
-
A search for proton decay into and a meson has been performed using data from a exposure (6050.3 live days) of Super-Kamiokande. Compared to previous searches this work introduces an improved model of the intranuclear interaction cross section, resulting in a factor of 2 reduction in uncertainties from this source and increase in signal efficiency. No significant data excess was found above the expected number of atmospheric neutrino background events resulting in no indication of proton decay into either mode. Lower limits on the proton partial lifetime of for and for at the 90% CL were set. These limits are around 1.5 times longer than our previous study and are the most stringent to date. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available December 1, 2025
-
We present the results of the charge ratio ( ) and polarization ( ) measurements using decay electron events collected between September 2008 and June 2022 with the Super-Kamiokande detector. Because of its underground location and long operation, we are able to perform high-precision measurements by accumulating cosmic-ray muons. We measured the muon charge ratio to be at , where is the muon energy and is the zenith angle of incoming cosmic-ray muons. This result is consistent with the Honda flux model while indicating a tension with the model of . We also measured the muon polarization at the production location to be at the muon momentum of at the surface of the mountain; this also suggests a tension with the Honda flux model of . This is the most precise measurement ever to experimentally determine the cosmic-ray muon polarization near . These measurement results are useful to improve atmospheric neutrino simulations. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available October 1, 2025
-
Abstract Neutrinos from very nearby supernovae, such as Betelgeuse, are expected to generate more than ten million events over 10 s in Super-Kamokande (SK). At such large event rates, the buffers of the SK analog-to-digital conversion board (QBEE) will overflow, causing random loss of data that are critical for understanding the dynamics of the supernova explosion mechanism. In order to solve this problem, two new data-acquisition (DAQ) modules were developed to aid in the observation of very nearby supernovae. The first of these, the SN module, is designed to save only the number of hit photomultiplier tubes during a supernova burst and the second, the Veto module, prescales the high-rate neutrino events to prevent the QBEE from overflowing based on information from the SN module. In the event of a very nearby supernova, these modules allow SK to reconstruct the time evolution of the neutrino event rate from beginning to end using both QBEE and SN module data. This paper presents the development and testing of these modules together with an analysis of supernova-like data generated with a flashing laser diode. We demonstrate that the Veto module successfully prevents DAQ overflows for Betelgeuse-like supernovae as well as the long-term stability of the new modules. During normal running the Veto module is found to issue DAQ vetos a few times per month resulting in a total dead-time less than 1 ms, and does not influence ordinary operations. Additionally, using simulation data we find that supernovae closer than 800 pc will trigger the Veto module, resulting in a prescaling of the observed neutrino data.more » « less
-
Abstract Preceding a core-collapse supernova (CCSN), various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande (SK) via inverse beta decay interactions. Once these pre-supernova (pre-SN) neutrinos are observed, an early warning of the upcoming CCSN can be provided. In light of this, KamLAND and SK, both located in the Kamioka mine in Japan, have been monitoring pre-SN neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and SK on pre-SN neutrino detection. A pre-SN alert system combining the KamLAND detector and the SK detector was developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-SN neutrino signal from a 15M⊙star within 510 pc of the Earth at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hr in advance.more » « lessFree, publicly-accessible full text available September 26, 2025
-
The Super-Kamiokande and T2K Collaborations present a joint measurement of neutrino oscillation parameters from their atmospheric and beam neutrino data. It uses a common interaction model for events overlapping in neutrino energy and correlated detector systematic uncertainties between the two datasets, which are found to be compatible. Using 3244.4 days of atmospheric data and a beam exposure of protons on target in (anti)neutrino mode, the analysis finds a exclusion of conservation (defined as ) and a exclusion of the inverted mass ordering. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available January 1, 2026