skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sakaue, Hirotaka"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Arctic oil spills are particularly detrimental as they cause extensive ice melting in addition to the environmental pollution they create. However, few studies have been undertaken to reveal how oil-ice interactions impact ice melting. A simultaneous measurement method is developed to investigate the heat transfer pathways from oil slicks to ice. Functional luminescent probes are dissolved in a liquid immiscible with water, which imitates spilled oil. Another luminescent probe is added to seeding particles in order to increase their luminescent intensity. Dual-luminescence imaging and particle imaging velocimetry (PIV) are combined into a single simultaneous measurement method. The developed measurement system shows simultaneous temperature and velocity measurements for natural convection of the immiscible liquid. Successful implementation of the two measurement techniques together is a step toward analyzing heat transfer pathways in a spilled oil adjacent to an ice body, which indicates the extent of melting. 
    more » « less
  2. A series of experiments were conducted to investigate the melting of ice adjacent to a water-immiscible liquid layer (n-dodecane) exposed to radiation from above. The experimental setup consisted of a borosilicate container containing an ice wall and a layer of n-dodecane heated from above. In addition to tracking the movement of the melt front, Particle Image Velocimetry (PIV) and Background Oriented Schlieren (BOS) measurements were conducted on the liquid-phase . Two distinct melting regimes were found to dominate the melting process. First was the uniform melting across the contact area with the immiscible liquid layer for low radiation levels (~1 kW/m 2 ). Second was the lateral intrusion regime, where a depression near free surface of the liquid forms in ice and grows laterally for radiation level greater than ~1 kW/m 2 . The ice surface remained flat and smooth in uniform melting regime, whereas in the lateral intrusion regime a series of rivulets were formed that carved valleys on the ice. PIV measurements showed a surface flow toward the ice for all heat flux levels caused by surface-tension forces. Increase of the heat flux levels caused a transition to multi-roll structure in the flow field. This multi-roll structure, which is accompanied by a recirculation zone near the ice, increased heat transfer coefficient near the surface of the liquid causing lateral intrusion regime. BOS measurements indicated presence of density gradients below the free surface of n-dodecane and in regions near ice that are caused by local small-scale temperature gradients. The current experiments were conducted to explore the melting dynamics and to shed light on the processes that influence the ice melting. Implications of such mechanisms in a real-life scenario, i.e. oil spill in ice-infested waters, needs to be explored further by using more liquids and improved accuracy with diagnostic techniques. 
    more » « less
  3. Abstract The development of new materials and their compositional and microstructural optimization are essential in regard to next-generation technologies such as clean energy and environmental sustainability. However, materials discovery and optimization have been a frustratingly slow process. The Edisonian trial-and-error process is time consuming and resource inefficient, particularly when contrasted with vast materials design spaces1. Whereas traditional combinatorial deposition methods can generate material libraries2,3, these suffer from limited material options and inability to leverage major breakthroughs in nanomaterial synthesis. Here we report a high-throughput combinatorial printing method capable of fabricating materials with compositional gradients at microscale spatial resolution. In situ mixing and printing in the aerosol phase allows instantaneous tuning of the mixing ratio of a broad range of materials on the fly, which is an important feature unobtainable in conventional multimaterials printing using feedstocks in liquid–liquid or solid–solid phases4–6. We demonstrate a variety of high-throughput printing strategies and applications in combinatorial doping, functional grading and chemical reaction, enabling materials exploration of doped chalcogenides and compositionally graded materials with gradient properties. The ability to combine the top-down design freedom of additive manufacturing with bottom-up control over local material compositions promises the development of compositionally complex materials inaccessible via conventional manufacturing approaches. 
    more » « less
  4. Abstract Arctic oil spills are particularly detrimental as they could cause extensive ice melting in addition to the environmental pollution they create. Floating oil slicks amongst ice floes absorb ambient energy and transfer that energy to the ice to aggravate melting in the thaw season. However, few studies have been undertaken to reveal how oil-ice interactions impact ice melting. This research employs a measurement technique to investigate the heat transfer pathways from oil slicks to the ice. Dual-luminescence imaging and particle imaging velocimetry (PIV) in a side cooled cavity is performed for temperature and velocity measurements of Toluene, respectively. Dual-luminescence imaging captured the spatial temperature distribution of the fuel. Consecutive imaging of the seeding particles in PIV provided the spatial velocity field of the fuel in the cavity. The results show that the convective field is directly coupled with the temperature field, i.e., the temperature difference instigates a flow in the liquid. Successful implementation of the two measuring techniques together is a step toward analyzing heat transfer pathways in a liquid fuel adjacent to an ice body, indicating the extent of melting. 
    more » « less
  5. Arctic oil spills are particularly detrimental as they could cause extensive ice melting in addition to the environmental pollution they create. Floating oil slicks amongst ice floes absorb ambient energy and transfer that energy to the ice to aggravate melting in the thaw season. However, few studies have been undertaken to reveal how oil-ice interactions impact ice melting. This research employs a measurement technique to investigate the heat transfer pathways from oil slicks to the ice. Dual-luminescence imaging and particle imaging velocimetry (PIV) in a side cooled cavity is performed for temperature and velocity measurements of Toluene, respectively. Dual-luminescence imaging captured the spatial temperature distribution of the fuel. Consecutive imaging of the seeding particles in PIV provided the spatial velocity field of the fuel in the cavity. The results show that the convective field is directly coupled with the temperature field, i.e., the temperature difference instigates a flow in the liquid. Successful implementation of the two measuring techniques together is a step toward analyzing heat transfer pathways in a liquid fuel adjacent to an ice body, indicating the extent of melting. 
    more » « less