skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-throughput printing of combinatorial materials from aerosols
Abstract The development of new materials and their compositional and microstructural optimization are essential in regard to next-generation technologies such as clean energy and environmental sustainability. However, materials discovery and optimization have been a frustratingly slow process. The Edisonian trial-and-error process is time consuming and resource inefficient, particularly when contrasted with vast materials design spaces1. Whereas traditional combinatorial deposition methods can generate material libraries2,3, these suffer from limited material options and inability to leverage major breakthroughs in nanomaterial synthesis. Here we report a high-throughput combinatorial printing method capable of fabricating materials with compositional gradients at microscale spatial resolution. In situ mixing and printing in the aerosol phase allows instantaneous tuning of the mixing ratio of a broad range of materials on the fly, which is an important feature unobtainable in conventional multimaterials printing using feedstocks in liquid–liquid or solid–solid phases4–6. We demonstrate a variety of high-throughput printing strategies and applications in combinatorial doping, functional grading and chemical reaction, enabling materials exploration of doped chalcogenides and compositionally graded materials with gradient properties. The ability to combine the top-down design freedom of additive manufacturing with bottom-up control over local material compositions promises the development of compositionally complex materials inaccessible via conventional manufacturing approaches.  more » « less
Award ID(s):
1747685
PAR ID:
10466610
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature
Volume:
617
Issue:
7960
ISSN:
0028-0836
Page Range / eLocation ID:
292 to 298
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Metal additive manufacturing (AM) holds immense potential for developing advanced structural alloys. However, the complex, heterogeneous nature of AM-produced materials presents significant challenges to traditional material characterization and optimization methods. This review explores the integration of artificial intelligence (AI) and machine learning (ML) with high-throughput material characterization protocols to rapidly establish the process–structure–property (PSP) relationships critically needed to dramatically accelerate the development of metal AM processes. Combinatorial high-throughput evaluations, including rapid material synthesis and nonstandard high-throughput testing protocols, such as spherical indentation and small punch tests, are discussed for their capability to rapidly assess mechanical properties and establish PSP linkages. Furthermore, the review examines the role of AI and ML in optimizing AM processes, particularly through Bayesian optimization, which offers new avenues for efficient exploration of high-dimensional design spaces. The review envisions a future where AI- and ML-driven, autonomous AM development cycles significantly enhance material and process optimization. 
    more » « less
  2. Abstract Optimizing material compositions often enhances thermoelectric performances. However, the large selection of possible base elements and dopants results in a vast composition design space that is too large to systematically search using solely domain knowledge. To address this challenge, a hybrid data‐driven strategy that integrates Bayesian optimization (BO) and Gaussian process regression (GPR) is proposed to optimize the composition of five elements (Ag, Se, S, Cu, and Te) in AgSe‐based thermoelectric materials. Data is collected from the literature to provide prior knowledge for the initial GPR model, which is updated by actively collected experimental data during the iteration between BO and experiments. Within seven iterations, the optimized AgSe‐based materials prepared using a simple high‐throughput ink mixing and blade coating method deliver a high power factor of 2100 µW m−1K−2, which is a 75% improvement from the baseline composite (nominal composition of Ag2Se1). The success of this study provides opportunities to generalize the demonstrated active machine learning technique to accelerate the development and optimization of a wide range of material systems with reduced experimental trials. 
    more » « less
  3. Thermoelectric materials, which can convert waste heat into electricity or act as solid‐state Peltier coolers, are emerging as key technologies to address global energy shortages and environmental sustainability. However, discovering materials with high thermoelectric conversion efficiency is a complex and slow process. The emerging field of high‐throughput material discovery demonstrates its potential to accelerate the development of new thermoelectric materials combining high efficiency and low cost. The synergistic integration of high‐throughput material processing and characterization techniques with machine learning algorithms can form an efficient closed‐loop process to generate and analyze broad datasets to discover new thermoelectric materials with unprecedented performances. Meanwhile, the recent development of advanced manufacturing methods provides exciting opportunities to realize scalable, low‐cost, and energy‐efficient fabrication of thermoelectric devices. This review provides an overview of recent advances in discovering thermoelectric materials using high‐throughput methods, including processing, characterization, and screening. Advanced manufacturing methods of thermoelectric devices are also introduced to realize the broad impacts of thermoelectric materials in power generation and solid‐state cooling. In the end, this article also discusses the future research prospects and directions. 
    more » « less
  4. null (Ed.)
    Particle mixing process is critical for the design and quality control of concrete and composite production. This paper develops an algorithm to simulate the high-shear mixing process of a granular flow containing a high proportion of solid particles mixed in a liquid. DEM is employed to simulate solid particle interactions; whereas SPH is implemented to simulate the liquid particles. The two-way coupling force between SPH and DEM particles is used to evaluate the solid-liquid interaction of a multi-phase flow. Using Darcy’s Law, this paper evaluates the coupling force as a function of local mixture porosity. After the model is verified by two benchmark case studies, i.e., a solid particle moving in a liquid and fluid flowing through a porous medium, this method is applied to a high shear mixing problem of two types of solid particles mixed in a viscous liquid by a four-bladed mixer. A homogeneity metric is introduced to characterize the mixing quality of the particulate mixture. The virtual experiments with the present algorithm show that adding more liquid or increasing liquid viscosity slows down the mixing process for a high solid load mix. Although the solid particles can be mixed well eventually, the liquid distribution is not homogeneous, especially when the viscosity of liquid is low. The present SPH-DEM model is versatile and suitable for virtual experiments of particle mixing process with different blades, solid particle densities and sizes, and liquid binders, and thus can expedite the design and development of concrete materials and particulate composites. 
    more » « less
  5. Abstract Developing novel lead‐free ferroelectric materials is crucial for next‐generation microelectronic technologies that are energy efficient and environment friendly. However, materials discovery and property optimization are typically time‐consuming due to the limited throughput of traditional synthesis methods. In this work, we use a high‐throughput combinatorial synthesis approach to fabricate lead‐free ferroelectric superlattices and solid solutions of (Ba0.7Ca0.3)TiO3(BCT) and Ba(Zr0.2Ti0.8)O3(BZT) phases with continuous variation of composition and layer thickness. High‐resolution x‐ray diffraction (XRD) and analytical scanning transmission electron microscopy (STEM) demonstrate high film quality and well‐controlled compositional gradients. Ferroelectric and dielectric property measurements identify the “optimal property point” achieved at the composition of 48BZT–52BCT. Displacement vector maps reveal that ferroelectric domain sizes are tunable by varying {BCT–BZT}Nsuperlattice geometry. This high‐throughput synthesis approach can be applied to many other material systems to expedite new materials discovery and properties optimization, allowing for the exploration of a large area of phase space within a single growth. image 
    more » « less