skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Salesa_Greus, F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Galactic gamma-ray diffuse emission (GDE) is emitted by cosmic rays (CRs), ultra-relativistic protons, and electrons, interacting with gas and electromagnetic radiation fields in the interstellar medium. Here we present the analysis of teraelectronvolt diffuse emission from a region of the Galactic plane over the range in longitude ofl∈ [43°, 73°], using data collected with the High Altitude Water Cherenkov (HAWC) detector. Spectral, longitudinal, and latitudinal distributions of the teraelectronvolt diffuse emission are shown. The radiation spectrum is compatible with the spectrum of the emission arising from a CR population with anindexsimilar to that of the observed CRs. When comparing with theDRAGONbase model, the HAWC GDE flux is higher by about a factor of 2. Unresolved sources such as pulsar wind nebulae and teraelectronvolt halos could explain the excess emission. Finally, deviations of the Galactic CR flux from the locally measured CR flux may additionally explain the difference between the predicted and measured diffuse fluxes. 
    more » « less
  2. Abstract The radio galaxy M87 is the central dominant galaxy of the Virgo Cluster. Very high-energy (VHE, ≳0.1 TeV) emission from M87 has been detected by imaging air Cherenkov telescopes. Recently, marginal evidence for VHE long-term emission has also been observed by the High Altitude Water Cherenkov Observatory, a gamma-ray and cosmic-ray detector array located in Puebla, Mexico. The mechanism that produces VHE emission in M87 remains unclear. This emission originates in its prominent jet, which has been spatially resolved from radio to X-rays. In this paper, we construct a spectral energy distribution from radio to gamma rays that is representative of the nonflaring activity of the source, and in order to explain the observed emission, we fit it with a lepto-hadronic emission model. We found that this model is able to explain nonflaring VHE emission of M87 as well as an orphan flare reported in 2005. 
    more » « less