Abstract The Galactic diffuse emission (GDE) is formed when cosmic rays leave the sources where they were accelerated, diffusively propagate in the Galactic magnetic field and interact with the interstellar medium and interstellar radiation field. GDE in γ-rays (GDE-γ) has been observed up to subpetaelectronvolt energies, although its origin may be explained by either cosmic-ray nuclei or electrons. Here we show that the γ-rays accompanying the high-energy neutrinos recently observed by the IceCube Observatory from the Galactic plane have a flux that is consistent with the GDE-γ observed by the Fermi-LAT and Tibet ASγ experiments around 1 TeV and 0.5 PeV, respectively. The consistency suggests that the diffuse γ-ray emission above ~1 TeV could be dominated by hadronuclear interactions, although a partial leptonic contribution cannot be excluded. Moreover, by comparing the fluxes of the Galactic and extragalactic diffuse emission backgrounds, we find that the neutrino luminosity of the Milky Way is one-to-two orders of magnitude lower than the average of distant galaxies. This finding implies that our Galaxy has not hosted the type of neutrino emitters that dominates the isotropic neutrino background at least in the past few tens of kiloyears. 
                        more » 
                        « less   
                    
                            
                            Galactic Gamma-Ray Diffuse Emission at TeV Energies with HAWC Data
                        
                    
    
            Abstract Galactic gamma-ray diffuse emission (GDE) is emitted by cosmic rays (CRs), ultra-relativistic protons, and electrons, interacting with gas and electromagnetic radiation fields in the interstellar medium. Here we present the analysis of teraelectronvolt diffuse emission from a region of the Galactic plane over the range in longitude ofl∈ [43°, 73°], using data collected with the High Altitude Water Cherenkov (HAWC) detector. Spectral, longitudinal, and latitudinal distributions of the teraelectronvolt diffuse emission are shown. The radiation spectrum is compatible with the spectrum of the emission arising from a CR population with anindexsimilar to that of the observed CRs. When comparing with theDRAGONbase model, the HAWC GDE flux is higher by about a factor of 2. Unresolved sources such as pulsar wind nebulae and teraelectronvolt halos could explain the excess emission. Finally, deviations of the Galactic CR flux from the locally measured CR flux may additionally explain the difference between the predicted and measured diffuse fluxes. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10518372
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 961
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 104
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We present the most precise measurements to date for the spatial extension and energy spectrum of theγ-ray region between a pulsar’s wind nebula and the interstellar medium, better known as the halo, present around Geminga and PSR B0656+14 (Monogem) using ∼2398 days of >1 TeV data collected by the HAWC observatory. We interpret the data using a physically motivated model for the diffuseγ-ray emission generated from positrons and electrons (e±) injected by the pulsar wind nebula and inverse Compton scattering with interstellar radiation fields. We find the morphologies of the regions inside these halos are characterized by an inhibited diffusion that are approximately three orders of magnitudes smaller than the Galactic average. We also obtain the e±emission efficiencies of 6.6% and 5.1%, respectively, for Geminga and Monogem. These results have remarkable consequences for the study of the particle diffusion in the region between the pulsar wind nebulae and the interstellar medium, and for the interpretation of the flux of positrons measured by the AMS-02 experiment above 10 GeV.more » « less
- 
            ABSTRACT We calculate spectra of escaping cosmic rays (CRs) accelerated at shocks produced by expanding Galactic superbubbles powered by multiple supernovae producing a continuous energy outflow in star-forming galaxies. We solve the generalized Kompaneets’ equations adapted to expansion in various external density profiles, including exponential and power-law shapes, and take into account that escaping CRs are dominated by those around their maximum energies. We find that the escaping CR spectrum largely depends on the specific density profiles and power source properties, and the results are compared to and constrained by the observed CR spectrum. As a generic demonstration, we apply the scheme to a superbubble occurring in the centre of the Milky Way, and find that under specific parameter sets the CRs produced in our model can explain the observed CR flux and spectrum around the second knee at 1017 eV.more » « less
- 
            Abstract The origin of high-energy galactic cosmic rays is yet to be understood, but some galactic cosmic-ray accelerators can accelerate cosmic rays up to PeV energies. The high-energy cosmic rays are expected to interact with the surrounding material or radiation, resulting in the production of gamma-rays and neutrinos. To optimize for the detection of such associated production of gamma-rays and neutrinos for a given source morphology and spectrum, a multimessenger analysis that combines gamma-rays and neutrinos is required. In this study, we use the Multi-Mission Maximum Likelihood framework with IceCube Maximum Likelihood Analysis software and HAWC Accelerated Likelihood to search for a correlation between 22 known gamma-ray sources from the third HAWC gamma-ray catalog and 14 yr of IceCube track-like data. No significant neutrino emission from the direction of the HAWC sources was found. We report the best-fit gamma-ray model and 90% CL neutrino flux limit from the 22 sources. From the neutrino flux limit, we conclude that, for five of the sources, the gamma-ray emission observed by HAWC cannot be produced purely from hadronic interactions. We report the limit for the fraction of gamma-rays produced by hadronic interactions for these five sources.more » « less
- 
            Abstract Cosmic rays (CRs) play a pivotal role in shaping the thermal and dynamical properties of astrophysical environments, such as galaxies and galaxy clusters. Recent observations suggest a stronger confinement of CRs in certain astrophysical systems than predicted by current CR-transport theories. Here, we show that the incorporation of microscale physics into CR-transport models can account for this enhanced CR confinement. We develop a theoretical description of the effect of magnetic microscale fluctuations originating from the mirror instability on macroscopic CR diffusion. We confirm our theory with large-dynamical-range simulations of CR transport in the intracluster medium (ICM) of galaxy clusters and kinetic simulations of CR transport in micromirror fields. We conclude that sub-teraelectronvolt CR confinement in the ICM is far more effective than previously anticipated on the basis of Galactic-transport extrapolations. The transformative impact of micromirrors on CR diffusion provides insights into how microphysics can reciprocally affect macroscopic dynamics and observable structures across a range of astrophysical scales.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    