Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
While the recent literature has seen a surge in the study of constrained bandit problems, all existing methods for these begin by assuming the feasibility of the underlying problem. We initiate the study of testing such feasibility assumptions, and in particular address the problem in the linear bandit setting, thus characterising the costs of feasibility testing for an unknown linear program using bandit feedback. Concretely, we test if 9x : Ax 0 for an unknown A 2 Rm×d, by playing a sequence of actions xt 2 Rd, and observing Axt + noise in response. By identifying the hypothesis as determining the sign of the value of a minimax game, we construct a novel test based on low-regret algorithms and a nonasymptotic law of iterated logarithms. We prove that this test is reliable, and adapts to the ‘signal level,’ T, of any instance, with mean sample costs scaling as O(d2/T2). We complement this by a minimax lower bound of (d/T2) for sample costs of reliable tests, dominating prior asymptotic lower bounds by capturing the dependence on d, and thus elucidating a basic insight missing in the extant literature on such problems.more » « lessFree, publicly-accessible full text available July 21, 2025
-
Human drivers can seamlessly adapt their driving decisions across geographical locations with diverse conditions and rules of the road, e.g., left vs. right-hand traffic. In contrast, existing models for autonomous driving have been thus far only deployed within restricted operational domains, i.e., without accounting for varying driving behaviors across locations or model scalability. In this work, we propose AnyD, a single geographically-aware conditional imitation learning (CIL) model that can efficiently learn from heterogeneous and globally distributed data with dynamic environmental, traffic, and social characteristics. Our key insight is to introduce a high-capacity geo-location-based channel attention mechanism that effectively adapts to local nuances while also flexibly modeling similarities among regions in a data-driven manner. By optimizing a contrastive imitation objective, our proposed approach can efficiently scale across the inherently imbalanced data distributions and location-dependent events. We demonstrate the benefits of our AnyD agent across multiple datasets, cities, and scalable deployment paradigms, i.e., centralized, semi-supervised, and distributed agent training. Specifically, AnyD outperforms CIL baselines by over 14% in open-loop evaluation and 30% in closed-loop testing on CARLA.more » « lessFree, publicly-accessible full text available November 6, 2024
-
We propose a novel supervised learning approach for political ideology prediction (PIP) that is capable of predicting out-of-distribution inputs. This problem is motivated by the fact that manual data-labeling is expensive, while self-reported labels are often scarce and exhibit significant selection bias. We propose a novel statistical model that decomposes the document embeddings into a linear superposition of two vectors; a latent neutral context vector independent of ideology, and a latent position vector aligned with ideology. We train an end-to-end model that has intermediate contextual and positional vectors as outputs. At deployment time, our model predicts labels for input documents by exclusively leveraging the predicted positional vectors. On two benchmark datasets we show that our model is capable of outputting predictions even when trained with as little as 5% biased data, and is significantly more accurate than the state-of-the-art. Through crowd-sourcing we validate the neutrality of contextual vectors, and show that context filtering results in ideological concentration, allowing for prediction on out-of-distribution examples.more » « less
-
Convolutional neural networks (CNNs) rely on the depth of the architecture to obtain complex features. It results in computationally expensive models for low-resource IoT devices. Convolutional operators are local and restricted in the receptive field, which increases with depth. We explore partial differential equations (PDEs) that offer a global receptive field without the added overhead of maintaining large kernel convolutional filters. We propose a new feature layer, called the Global layer, that enforces PDE constraints on the feature maps, resulting in rich features. These constraints are solved by embedding iterative schemes in the network. The proposed layer can be embedded in any deep CNN to transform it into a shallower network. Thus, resulting in compact and computationally efficient architectures achieving similar performance as the original network. Our experimental evaluation demonstrates that architectures with global layers require 2 − 5× less computational and storage budget without any significant loss in performancemore » « less
-
We consider worker skill estimation for the single-coin Dawid-Skene crowdsourcing model. In practice, skill-estimation is challenging because worker assignments are sparse and irregular due to the arbitrary and uncontrolled availability of workers. We formulate skill estimation as a rank-one correlation-matrix completion problem, where the observed components correspond to observed label correlation between workers. We show that the correlation matrix can be successfully recovered and skills are identifiable if and only if the sampling matrix (observed components) does not have a bipartite connected component. We then propose a projected gradient descent scheme and show that skill estimates converge to the desired global optima for such sampling matrices. Our proof is original and the results are surprising in light of the fact that even the weighted rank-one matrix factorization problem is NP-hard in general. Next, we derive sample complexity bounds in terms of spectral properties of the signless Laplacian of the sampling matrix. Our proposed scheme achieves state-of-art performance on a number of real-world datasets.more » « less
-
We consider the problem of learning the qualities w_1, ... , w_n of a collection of items by performing noisy comparisons among them. We assume there is a fixed “comparison graph” and every neighboring pair of items is compared k times. We will study the popular Bradley-Terry-Luce model, where the probability that item i wins a comparison against j equals w_i/(w_i + w_j). We are interested in how the expected error in estimating the vector w = (w_1, ... , w_n) behaves in the regime when the number of comparisons k is large. Our contribution is the determination of the minimax rate up to a constant factor. We show that this rate is achieved by a simple algorithm based on weighted least squares, with weights determined from the empirical outcomes of the comparisons. This algorithm can be implemented in nearly linear time in the total number of comparisons.more » « less