skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Samet, Hanan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Objective

    The COVID-19 pandemic emphasized the value of geospatial visual analytics for both epidemiologists and the general public. However, systems struggled to encode temporal and geospatial trends of multiple, potentially interacting variables, such as active cases, deaths, and vaccinations. We sought to ask (1) how epidemiologists interact with visual analytics tools, (2) how multiple, time-varying, geospatial variables can be conveyed in a unified view, and (3) how complex spatiotemporal encodings affect utility for both experts and non-experts.

    Materials and Methods

    We propose encoding variables with animated, concentric, hollow circles, allowing multiple variables via color encoding and avoiding occlusion problems, and we implement this method in a browser-based tool called CoronaViz. We conduct task-based evaluations with non-experts, as well as in-depth interviews and observational sessions with epidemiologists, covering a range of tools and encodings.

    Results

    Sessions with epidemiologists confirmed the importance of multivariate, spatiotemporal queries and the utility of CoronaViz for answering them, while providing direction for future development. Non-experts tasked with performing spatiotemporal queries unanimously preferred animation to multi-view dashboards.

    Discussion

    We find that conveying complex, multivariate data necessarily involves trade-offs. Yet, our studies suggest the importance of complementary visualization strategies, with our animated multivariate spatiotemporal encoding filling important needs for exploration and presentation.

    Conclusion

    CoronaViz’s unique ability to convey multiple, time-varying, geospatial variables makes it both a valuable addition to interactive COVID-19 dashboards and a platform for empowering experts and the public during future disease outbreaks. CoronaViz is open-source and a live instance is freely hosted at http://coronaviz.umiacs.io.

     
    more » « less
  2. Many spatial applications benefit from the fast answering to a seemingly simple spatial query: “Is a point of interest (POI) ‘in-path’ to the shortest path between a source and a destination?” In this context, an in-path POI is one that is either on the shortest path or can be reached within a bounded yet small detour from the shortest path. The fast answering of the in-path queries is contingent on being able to determine without having to actually compute the shortest paths during runtime. Thus, this requires a precomputation solution. The key contribution of the paper is the development of an in-path oracle that is based on precomputation of which pairs of sources and destinations are in-path with respect to the given POI. For a given road network with n nodes and m POIs, an O(m×n)-sized oracle is envisioned based on the reduction of the well-separated pairs (WSP) decomposition of the road network. Furthermore, an oracle can be indexed in a database using a B-tree that can answer queries at very high throughput. Experimental results on the real road network POI dataset illustrate the superiority of this technique compared to a baseline algorithm. The proposed approach can answer ≈ 1.5 million in-path queries per second compared to a few hundred per second using a suitable baseline approach. 
    more » « less