Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Scarano, Stephen; Vasudevan, Vijayalakshmi; Samory, Mattia; Yang, Kai-Cheng; Yang, JungHwan; Grabowicz, Przemyslaw A (Ed.)Social media platforms allow users to create polls to gather public opinion on diverse topics. However, we know little about what such polls are used for and how reliable they are, especially in significant contexts like elections. Focusing on the 2020 presidential elections in the U.S., this study shows that outcomes of election polls on Twitter deviate from election results despite their prevalence. Leveraging demographic inference and statistical analysis, we find that Twitter polls are disproportionately authored by male Republicans and exhibit a large bias towards candidate Donald Trump in comparison to mainstream polls. We investigate potential sources of biased outcomes from the point of view of inauthentic, automated, and counter-normative behavior. Using social media experiments and interviews with poll authors, we identify inconsistencies between public vote counts and those privately visible to poll authors, with the gap potentially attributable to purchased votes. We find that election polls tend to be more biased, contain more questionable votes, and attract more bots before the election day than after. We highlight and compare key factors contributing to biased poll outcomes. Finally, we identify instances of polls spreading voter fraud conspiracy theories and estimate that a couple of thousand such polls were posted in 2020. The study discusses the implications of biased election polls in the context of transparency and accountability of social media platforms.more » « lessFree, publicly-accessible full text available June 7, 2026
-
Polls posted on social media can provide information about public opinion on a variety of issues from business decisions to support for presidential election candidates. However, it is largely unknown whether the information provided by social polls is useful or not. To enhance our understanding of social polls, we examine nearly two thousand Twitter polls gauging support for U.S. presidential candidates during the 2016 and 2020 election campaigns. First, we describe the prevalence of social polls. Second, we characterize social polls in terms of the engagement they elicit and the response options they present. Third, leveraging machine learning models, we infer and describe several characteristics, including demographics and political leanings, of the users who author and interact with social polls. Finally, we study the relationship between social poll results, their attributes, and the characteristics of users interacting with them. Our findings suggest how and to what extent polling on Twitter is biased in terms of content, authorship, and audience. The 2016 and 2020 polls were predominantly crafted by older males and manifested a pronounced bias favoring candidate Donald Trump, whereas traditional surveys favored Democratic candidates. We further identify and explore the potential reasons for such biases and discuss their repercussions.more » « less
-
The disruptive offline mobilization of participants in online conspiracy theory (CT) discussions has highlighted the importance of understanding how online users may form radicalized conspiracy beliefs. While prior work researched the factors leading up to joining online CT discussions and provided theories of how conspiracy beliefs form, we have little understanding of how conspiracy radicalization evolves after users join CT discussion communities. In this paper, we provide the empirical modeling of various radicalization phases in online CT discussion participants.To unpack how conspiracy engagement is related to radicalization, we first characterize the users' journey through CT discussions via conspiracy engagement pathways. Specifically, by studying 36K Reddit users through their 169M contributions, we uncover four distinct pathways of conspiracy engagement: steady high, increasing, decreasing, and steady low.We further model three successive stages of radicalization guided by prior theoretical works.Specific sub-populations of users, namely those on steady high and increasing conspiracy engagement pathways, progress successively through various radicalization stages. In contrast, users on the decreasing engagement pathway show distinct behavior: they limit their CT discussions to specialized topics, participate in diverse discussion groups, and show reduced conformity with conspiracy subreddits. By examining users who disengage from online CT discussions, this paper provides promising insights about conspiracy recovery process.more » « less
-
Online discussion platforms provide a forum to strengthen and propagate belief in misinformed conspiracy theories. Yet, they also offer avenues for conspiracy theorists to express their doubts and experiences of cognitive dissonance. Such expressions of dissonance may shed light on who abandons misguided beliefs and under what circumstances. This paper characterizes self-disclosures of dissonance about QAnon-a conspiracy theory initiated by a mysterious leader "Q" and popularized by their followers ?anons"-in conspiratorial subreddits. To understand what dissonance and disbelief mean within conspiracy communities, we first characterize their social imaginaries-a broad understanding of how people collectively imagine their social existence. Focusing on 2K posts from two image boards, 4chan and 8chan, and 1.2 M comments and posts from 12 subreddits dedicated to QAnon, we adopt a mixed-methods approach to uncover the symbolic language representing the movement,expectations,practices,heroes and foes of the QAnon community. We use these social imaginaries to create a computational framework for distinguishing belief and dissonance from general discussion about QAnon, surfacing in the 1.2M comments. We investigate the dissonant comments to characterize the dissonance expressed along QAnon social imaginaries. Further, analyzing user engagement with QAnon conspiracy subreddits, we find that self-disclosures of dissonance correlate with a significant decrease in user contributions and ultimately with their departure from the community. Our work offers a systematic framework for uncovering the dimensions and coded language related to QAnon social imaginaries and can serve as a toolbox for studying other conspiracy theories across different platforms. We also contribute a computational framework for identifying dissonance self-disclosures and measuring the changes in user engagement surrounding dissonance. Our work provide insights into designing dissonance based interventions that can potentially dissuade conspiracists from engaging in online conspiracy discussion communities.more » « less
-
null (Ed.)Widespread conspiracy theories, like those motivating anti-vaccination attitudes or climate change denial, propel collective action, and bear society-wide consequences. Yet, empirical research has largely studied conspiracy theory adoption as an individual pursuit, rather than as a socially mediated process. What makes users join communities endorsing and spreading conspiracy theories? We leverage longitudinal data from 56 conspiracy communities on Reddit to compare individual and social factors determining which users join the communities. Using a quasi-experimental approach, we first identify 30K future conspiracists?(FC) and30K matched non-conspiracists?(NC). We then provide empirical evidence of the importance of social factors across six dimensions relative to the individual factors by analyzing 6 million Reddit comments and posts. Specifically, in social factors, we find that dyadic interactions with members of the conspiracy communities and marginalization outside of the conspiracy communities are the most important social precursors to conspiracy joining-even outperforming individual factor baselines. Our results offer quantitative backing to understand social processes and echo chamber effects in conspiratorial engagement, with important implications for democratic institutions and online communities.more » « less
-
Online communities play a crucial role in disseminating conspiracy theories. New theories often emerge in the aftermath of catastrophic events. Despite evidence of their widespread appeal, surprisingly little is known about who participates in these event-specific conspiratorial discussions or how do these discussions evolve over time. We study r/conspiracy, an active Reddit community of more than 200,000 users dedicated to conspiratorial discussions. By focusing on four tragic events and 10 years of discussions, we find three distinct user cohorts: joiners, who never participated in Reddit but joined r/conspiracy only after the event; converts who were active Reddit users but joined r/conspiracy only after the event; and veterans, who are longstanding r/conspiracy members. While joiners and converts have a shorter lifespan in the community in comparison to the veterans, joiners are more active during their shorter tenure, becoming increasingly engaged over time. Finally, to investigate how these events affect users’ conspiratorial discussions, we adopted a causal inference approach to analyze user comments around the time of the events. We find that discussions happening after the event exhibit signs of emotional shock, increased language complexity, and simultaneous expressions of certainty and doubtfulness. Our work provides insight on how online communities may detect new conspiracy theories that emerge ensuing dramatic events, and in the process stop them before they spread.more » « less
An official website of the United States government

Full Text Available