skip to main content


Search for: All records

Creators/Authors contains: "Samsel, Francesca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hinrichs, Uta Perin (Ed.)
    As scientific data continues to grow in size, complexity, and density, the representation scope of three-dimensional spaces, data sampling methods, and transfer functions have improved in parallel, allowing visualization practitioners to produce richer multidimensional encodings. Glyphs, in particular, have become an essential encoding tool due to their versatile applications in co-located multi-variate volumetric datasets. While prior work has been conducted investigating the perceptual attributes of computationally-generated three-dimensional glyph-forms for scientific visualization, their affective and expressive qualities have yet to be examined. Further, our prior work has demonstrated the benefits of artist hand-created glyph forms in contrast to commonly-used synthetic forms in increasing visual diversity, discrimination, and expressive association in complex environmental datasets. In order to begin to address this gap, we establish preliminary groundwork for an affective design space for hand-created glyph forms, produce a novel set of glyphforms based on this design space, describe a non-verbal method for discovering affective classifications of glyph-forms adopted from current affect theory, and report the results of two studies that explore how these three-dimensional forms produce consistent affective responses across assorted study cohorts. 
    more » « less
  2. Hinrichs, Ute ; Perin, Charles (Ed.)
    As scientific data continues to grow in size, complexity, and density, the representation scope of three-dimensional spaces, data sampling methods, and transfer functions have improved in parallel, allowing visualization practitioners to produce richer multidimensional encodings. Glyphs, in particular, have become an essential encoding tool due to their versatile applications in co-located multivariate volumetric datasets. While prior work has been conducted investigating the perceptual attributes of computationally-generated three-dimensional glyph-forms for scientific visualization, their affective and expressive qualities have yet to be examined. Further, our prior work has demonstrated the benefits of artist hand-created glyph forms in contrast to commonly-used synthetic forms in increasing visual diversity, discrimination, and expressive association in complex environmental datasets. In order to begin to address this gap, we establish preliminary groundwork for an affective design space for hand-created glyph forms, produce a novel set of glyph forms based on this design space, describe a non-verbal method for discovering affective classifications of glyph-forms adopted from current affect theory, and report the results of two studies that explore how these three-dimensional forms produce consistent affective responses across assorted study cohorts. 
    more » « less
  3. As computing capacity increases and data grows in both size and complexity, we are capable of understanding our surroundings with increas- ing nuance. Visualizing this often-multivariate environmental data presents complex visual scenes to be navigated, parsed, analyzed, and communicated. We draw from both the natural world and artistic color theory to present 1) a new color system, designed to establish an af- fective connection between big environmental data and its original source material, 2) a tool for extracting these workable palettes from natural imagery, and 3) a selection of pre-made linear colormaps and discrete color sets drawn from natural environments. 
    more » « less
  4. Data physicalizations (3D printed terrain models, anatomical scans, or even abstract data) can naturally engage both the visual and haptic senses in ways that are difficult or impossible to do with traditional planar touch screens and even immersive digital displays. Yet, the rigid 3D physicalizations produced with today's most common 3D printers are fundamentally limited for data exploration and querying tasks that require dynamic input (e.g., touch sensing) and output (e.g., animation), functions that are easily handled with digital displays. We introduce a novel style of hybrid virtual + physical visualization designed specifically to support interactive data exploration tasks. Working toward a "best of both worlds" solution, our approach fuses immersive AR, physical 3D data printouts, and touch sensing through the physicalization. We demonstrate that this solution can support three of the most common spatial data querying interactions used in scientific visualization (streamline seeding, dynamic cutting places, and world-in-miniature visualization). Finally, we present quantitative performance data and describe a first application to exploratory visualization of an actively studied supercomputer climate simulation data with feedback from domain scientists. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Visualization research and practice that incorporates the arts make claims to being more effective in connecting with users on a human level. However, these claims are difficult to measure quantitatively. In this paper, we present a follow-on study to use close reading, a humanities method from literary studies, to evaluate visualizations created using artistic processes [Bares 2020]. Close reading is a method in literary studies that we've previously explored as a method for evaluating visualizations. To use close reading as an evaluation method, we guide participants through a series of steps designed to prompt them to interpret the visualization's formal, informational, and contextual features. Here we elaborate on our motivations for using close reading as a method to evaluate visualizations, and enumerate the procedures we used in the study to evaluate a 2D visualization, including modifications made because of the COVID-19 pandemic. Key findings of this study include that close reading is an effective formative method to elicit information related to interpretation and critique; user subject position; and suspicion or skepticism. Information gained through close reading is valuable in the visualization design and iteration processes, both related to designing features and other formal elements more effectively, as well as in considering larger questions of context and framing. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)
    We, as a society, need artists to help us interpret and explain science, but what does an artist's studio look like when today's science is built upon the language of large, increasingly complex data? This paper presents a data visualization design interface that lifts the barriers for artists to engage with actively studied, 3D multivariate datasets. To accomplish this, the interface must weave together the need for creative artistic processes and the challenging constraints of real-time, data-driven 3D computer graphics. The result is an interface for a technical process, but technical in the way artistic printmaking is technical, not in the sense of computer scripting and programming. Using metaphor, computer graphics algorithms and shader program parameters are reimagined as tools in an artist's printmaking studio. These artistic metaphors and language are merged with a puzzle-piece approach to visual programming and matching iconography. Finally, artists access the interface using a web browser, making it possible to design immersive multivariate data visualizations that can be displayed in VR and AR environments using familiar drawing tablets and touch screens. We report on insights from the interdisciplinary design of the interface and early feedback from artists. 
    more » « less
  9. As scientific data grow larger and more complex, an equally rich visual vocabulary is needed to fully articulate its insights. We present a series of images that are made possible by a recent technical development “Artifact-Based Rendering,” a component of our broader effort to create a methodology for scientific visualization that draws on principles of art and design. 
    more » « less