Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We present spectra of the supernova (SN) impostor AT 2016blu spanning over a decade. This transient exhibits quasi-periodic outbursts with an $$\sim$$113 d period, likely triggered by periastron encounters in an eccentric binary system where the primary star is a luminous blue variable (LBV). The overall spectrum remains fairly consistent during quiescence and eruptions, with subtle changes in line-profile shapes and other details. Some narrow emission features indicate contamination from a nearby H ii region in the host galaxy, NGC 4559. Broader H $$\alpha$$ profiles exhibit Lorentzian shapes with full width at half-maximum intensity (FWHM) values that vary significantly, showing no correlation with photometric outbursts or the 113 d phase. At some epochs, H $$\alpha$$ exhibits asymmetric profiles with a stronger redshifted wing, while broad and sometimes multicomponent P Cygni absorption features occasionally appear, but are again uncorrelated with brightness or phase. These P Cygni absorptions have high velocities compared to the FWHM of the H $$\alpha$$ emission line, perhaps suggesting that the absorption component is not in the LBV’s wind, but is instead associated with a companion. The lack of phase dependence in line-profile changes may point to interaction between a companion and a variable or inhomogeneous primary wind, in an orbit with only mild eccentricity. Recent photometric data indicate that AT 2016blu experienced its 21st outburst around 2023 May/June, as predicted based on its period. This type of quasi-periodic LBV remains poorly understood, but its spectra and erratic light curve resemble some pre-SN outbursts such as those of SN 2009ip.more » « less
-
Abstract We present new follow-up observations of two ultra-diffuse galaxies (UDGs) selected for their distorted morphologies and tidal features, suggestive of tidal influence. Using Hubble Space Telescope Advanced Camera for Surveys F555W and F814W imaging, we identify 8 ± 2 globular clusters in KUG 0203-Dw1 and 6 ± 2 in KDG 013, abundances typical for normal dwarf galaxies of similar stellar mass. Jansky Very Large Array data reveal a clear Hidetection of KUG 0203-Dw1 with a gas mass estimate of and evidence of active stripping by the host, while KDG 013 has no clear gas detection. The UDGs likely originated as normal dwarf galaxies that have been subjected to significant stripping and tidal heating, causing them to become more diffuse. These two UDGs complete a sample of five exhibiting tidal features in the full Canada–France–Hawaii Telescope Legacy Survey area (∼1502deg). These tidally influenced UDGs exhibit diverse properties; one stands out as a potential result of a dwarf merger, while the remainder suggest tidal heating origins. We also cannot conclusively rule out that these galaxies became UDGs in the field before processing by the group environment, underscoring the need for broader searches of diffuse galaxies to better understand the impact of galaxy interactions.more » « less
-
Abstract We present the first comprehensive census of the satellite population around a Large Magellanic Cloud stellar-mass galaxy, as part of the Magellanic Analog Dwarf Companions and Stellar Halos (MADCASH) survey. We have surveyed NGC 2403 (D= 3.0 Mpc) with the Subaru/Hyper Suprime-Cam imager out to a projected radius of 90 kpc (with partial coverage extending out to ∼110 kpc, or ∼80% of the virial radius of NGC 2403), resolving stars in the uppermost ∼2.5 mag of its red giant branch. By looking for stellar overdensities in the red giant branch spatial density map, we identify 149 satellite candidates, of which only the previously discovered MADCASH J074238+65201-dw is a bona fide dwarf, together with the more massive and disrupting satellite DDO 44. We carefully assess the completeness of our search via injection of artificial dwarf galaxies into the images, finding that we are reliably sensitive to candidates down toMV∼ −7.5 mag (and somewhat sensitive to even fainter satellites). A comparison of the satellite luminosity function of NGC 2403 down to this magnitude limit to theoretical expectations shows overall good agreement. This is the first of a full sample of 11 Magellanic Cloud–mass host galaxies we will analyze, creating a statistical sample that will provide the first quantitative constraints on hierarchical models of galaxy formation around low-mass hosts.more » « less
-
Abstract We report the discovery of Corvus A, a low-mass, gas-rich galaxy at a distance of approximately 3.5 Mpc, identified in DR10 of the Dark Energy Camera Legacy Imaging Survey during the initial phase of our ongoing SEmi-Automated Machine LEarning Search for Semi-resolved galaxies (SEAMLESS). Jansky Very Large Array observations of Corvus A detect Hiline emission at a radial velocity of 523 ± 2 km s−1. Magellan/Megacam imaging reveals an irregular and complex stellar population with both young and old stars. We detect UV emission in Neil Gehrels Swift observations, indicative of recent star formation. However, there are no signs of Hiiregions in Hαimaging from Steward Observatory’s Kuiper telescope. Based on the Megacam color–magnitude diagram we measure the distance to Corvus A via the tip of the red giant branch standard candle as 3.48 ± 0.24 Mpc. This makes Corvus A remarkably isolated, with no known galaxy within ∼1 Mpc. Based on this distance, we estimate the Hiand stellar mass of Corvus A to be and , respectively. Although there are some signs of rotation, the Hidistribution of Corvus A appears to be close to face on, analogous to that of Leo T, and we therefore do not attempt to infer a dynamical mass from its Hiline width. Higher-resolution synthesis imaging is required to confirm this morphology and to draw robust conclusions from its gas kinematics.more » « less
-
Abstract We have discovered the stellar counterpart to the ALFALFA Virgo 7 cloud complex, which has been thought to be optically dark and nearly star-free since its discovery in 2007. This ∼190 kpc long chain of enormous atomic gas clouds (MHi∼ 109M⊙) is embedded in the hot intracluster medium of the Virgo galaxy cluster but is isolated from any galaxy. Its faint, blue stellar counterpart, BC6, was identified in a visual search of archival optical and UV imaging. Follow-up observations with the Green Bank Telescope, Hobby–Eberly Telescope, and Hubble Space Telescope demonstrate that this faint counterpart is at the same velocity as the atomic gas, actively forming stars, and metal-rich (12 + (O/H) = 8.58 ± 0.25). We estimate its stellar mass to be only , making it one of the most gas-rich stellar systems known. Aside from its extraordinary gas content, the properties of BC6 are entirely consistent with those of a recently identified class of young, low-mass, isolated, and star-forming clouds in Virgo that appear to have formed via extreme ram pressure stripping events. We expand the existing discussion of the origin of this structure and suggest NGC 4522 as a likely candidate; however, the current evidence is not fully consistent with any of our proposed progenitor galaxies. We anticipate that other “dark” gas clouds in Virgo may have similarly faint, star-forming counterparts. We aim to identify these through the help of a citizen science search of the entire cluster.more » « less
-
Abstract We have conducted a systematic search around the Milky Way (MW) analog NGC 253 (D= 3.5 Mpc), as a part of the Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS)—a Magellan+Megacam survey to identify dwarfs and other substructures in resolved stellar light around MW-mass galaxies outside of the Local Group. In total, NGC 253 has five satellites identified by PISCeS within 100 kpc with an absoluteV-band magnitude ofMV< −7. We have additionally obtained deep Hubble Space Telescope imaging of four reported candidates beyond the survey footprint: Do III, Do IV, and dw0036m2828 are confirmed to be satellites of NGC 253, while SculptorSR is found to be a background galaxy. We find no convincing evidence for the presence of a plane of satellites surrounding NGC 253. We construct its satellite luminosity function, which is complete down toMV≲ −8 out to 100 kpc andMV≲ −9 out to 300 kpc, and compare it to those calculated for other Local Volume galaxies. Exploring trends in satellite counts and star-forming fractions among satellite systems, we find relationships with host stellar mass, environment, and morphology, pointing to a complex picture of satellite formation, and a successful model has to reproduce all of these trends.more » « less
-
ABSTRACT We study the relative fractions of quenched and star-forming satellite galaxies in the Satellites Around Galactic Analogs (SAGA) survey and Exploration of Local VolumE Satellites (ELVES) program, two nearby and complementary samples of Milky Way-like galaxies that take different approaches to identify faint satellite galaxy populations. We cross-check and validate sample cuts and selection criteria, as well as explore the effects of different star-formation definitions when determining the quenched satellite fraction of Milky Way analogues. We find the mean ELVES quenched fraction (〈QF〉), derived using a specific star formation rate (sSFR) threshold, decreases from ∼50 per cent to ∼27 per cent after applying a cut in absolute magnitude to match that of the SAGA survey (〈QF〉SAGA ∼9 per cent). We show these results are consistent for alternative star-formation definitions. Furthermore, these quenched fractions remain virtually unchanged after applying an additional cut in surface brightness. Using a consistently derived sSFR and absolute magnitude limit for both samples, we show that the quenched fraction and the cumulative number of satellites in the ELVES and SAGA samples broadly agree. We briefly explore radial trends in the ELVES and SAGA samples, finding general agreement in the number of star-forming satellites per host as a function of radius. Despite the broad agreement between the ELVES and SAGA samples, some tension remains with these quenched fractions in comparison to the Local Group and simulations of Milky Way analogues.more » « less
-
Abstract We present upgraded infrastructure for Searches After Gravitational waves Using ARizona Observatories (SAGUARO) during LIGO, Virgo, and KAGRA’s fourth gravitational-wave (GW) observing run (O4). These upgrades implement many of the lessons we learned after a comprehensive analysis of potential electromagnetic counterparts to the GWs discovered during the previous observing run. We have developed a new web-based target and observation manager (TOM) that allows us to coordinate sky surveys, vet potential counterparts, and trigger follow-up observations from one centralized portal. The TOM includes software that aggregates all publicly available information on the light curves and possible host galaxies of targets, allowing us to rule out potential contaminants like active galactic nuclei, variable stars, solar system objects, and preexisting supernovae, as well as to assess the viability of any plausible counterparts. We have also upgraded our image-subtraction pipeline by assembling deeper reference images and training a new neural-network-based real–bogus classifier. These infrastructure upgrades will aid coordination by enabling the prompt reporting of observations, discoveries, and analysis to the GW follow-up community, and put SAGUARO in an advantageous position to discover kilonovae in the remainder of O4 and beyond. Many elements of our open-source software stack have broad utility beyond multimessenger astronomy, and will be particularly relevant in the “big data” era of transient discoveries by the Vera C. Rubin Observatory.more » « less
-
Abstract SN 2023ixf was discovered in M101 within a day of the explosion and rapidly classified as a Type II supernova with flash features. Here we present ultraviolet (UV) spectra obtained with the Hubble Space Telescope 14, 19, 24, and 66 days after the explosion. Interaction between the supernova ejecta and circumstellar material (CSM) is seen in the UV throughout our observations in the flux of the first three epochs and asymmetric Mgiiemission on day 66. We compare our observations to CMFGEN supernova models that include CSM interaction ( M⊙yr−1) and find that the power from CSM interaction is decreasing with time, fromLsh≈ 5 × 1042erg s−1toLsh≈ 1 × 1040erg s−1between days 14 and 66. We examine the contribution of individual atomic species to the spectra on days 14 and 19, showing that the majority of the features are dominated by iron, nickel, magnesium, and chromium absorption in the ejecta. The UV spectral energy distribution of SN 2023ixf sits between that of supernovae, which show no definitive signs of CSM interaction, and those with persistent signatures assuming the same progenitor radius and metallicity. Finally, we show that the evolution and asymmetric shape of the Mgiiλλ2796, 2802 emission are not unique to SN 2023ixf. These observations add to the early measurements of dense, confined CSM interaction, tracing the mass-loss history of SN 2023ixf to ∼33 yr prior to the explosion and the density profile to a radius of ∼5.7 × 1015cm. They show the relatively short evolution from a quiescent red supergiant wind to high mass loss.more » « less
-
Abstract We present photometric and spectroscopic observations of SN 2023fyq, a Type Ibn supernova (SN) in the nearby galaxy NGC 4388 (D≃ 18 Mpc). In addition, we trace the 3 yr long precursor emission at the position of SN 2023fyq using data from DLT40, ATLAS, Zwicky Transient Facility, ASAS-SN, Swift, and amateur astronomer Koichi Itagaki. The double-peaked postexplosion light curve reaches a luminosity of ∼1043erg s−1. The strong intermediate-width He lines observed in the nebular spectrum imply the interaction is still active at late phases. We found that the precursor activity in SN 2023fyq is best explained by the mass transfer in a binary system involving a low-mass He star and a compact companion. An equatorial disk is likely formed in this process (∼0.6M⊙), and the interaction of SN ejecta with this disk powers the second peak of the SN. The early SN light curve reveals the presence of dense extended material (∼0.3M⊙) at ∼3000R⊙ejected weeks before the SN explosion, likely due to final-stage core silicon burning or runaway mass transfer resulting from binary orbital shrinking, leading to rapid-rising precursor emission within ∼30 days prior to explosion. The final explosion could be triggered either by the core collapse of the He star or by the merger of the He star with a compact object. SN 2023fyq, along with SN 2018gjx and SN 2015G, forms a unique class of Type Ibn SNe, which originate in binary systems and are likely to exhibit detectable long-lasting pre-explosion outbursts with magnitudes ranging from −10 to −13.more » « less
An official website of the United States government
