Over the last decade KCNQ2 channels have arisen as fundamental and indispensable regulators of neonatal brain excitability, with KCNQ2 loss-of-function pathogenic variants being increasingly identified in patients with developmental and epileptic encephalopathy. However, the mechanisms by which KCNQ2 loss-of-function variants lead to network dysfunction are not fully known. An important remaining knowledge gap is whether loss of KCNQ2 function alters GABAergic interneuron activity early in development. To address this question, we applied mesoscale calcium imaging
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ex vivo in postnatal day 4–7 mice lacking KCNQ2 channels in interneurons (Vgat-ires-cre;Kcnq2f/f;GCamp5 ). In the presence of elevated extracellular potassium concentrations, ablation of KCNQ2 channels from GABAergic cells increased the interneuron population activity in the hippocampal formation and regions of the neocortex. We found that this increased population activity depends on fast synaptic transmission, with excitatory transmission promoting the activity and GABAergic transmission curtailing it. Together, our data show that loss of function of KCNQ2 channels from interneurons increases the network excitability of the immature GABAergic circuits, revealing a new function of KCNQ2 channels in interneuron physiology in the developing brain. -
Gain-of-function (GOF) pathogenic variants in the potassium channels KCNQ2 and KCNQ3 lead to hyperexcitability disorders such as epilepsy and autism spectrum disorders. However, the underlying cellular mechanisms of how these variants impair forebrain function are unclear. Here, we show that the R201C variant in KCNQ2 has opposite effects on the excitability of two types of mouse pyramidal neurons of either sex, causing hyperexcitability in layer 2/3 (L2/3) pyramidal neurons and hypoexcitability in CA1 pyramidal neurons. Similarly, the homologous R231C variant in KCNQ3 leads to hyperexcitability in L2/3 pyramidal neurons and hypoexcitability in CA1 pyramidal neurons. However, the effects of KCNQ3 gain-of-function on excitability are specific to superficial CA1 pyramidal neurons. These findings reveal a new level of complexity in the function of KCNQ2 and KCNQ3 channels in the forebrain and provide a framework for understanding the effects of gain-of-function variants and potassium channels in the brain.
SIGNIFICANCE STATEMENT KCNQ2/3 gain-of-function (GOF) variants lead to severe forms of neurodevelopmental disorders, but the mechanisms by which these channels affect neuronal activity are poorly understood. In this study, using a series of transgenic mice we demonstrate that the same KCNQ2/3 GOF variants can lead to either hyperexcitability or hypoexcitability in different types of pyramidal neurons [CA1 vs layer (L)2/3]. Additionally, we show that expression of the recurrent KCNQ2 GOF variant R201C in forebrain pyramidal neurons could lead to seizures and SUDEP. Our data suggest that the effects of KCNQ2/3 GOF variants depend on specific cell types and brain regions, possibly accounting for the diverse range of phenotypes observed in individuals with KCNQ2/3 GOF variants. -
Blackwell, Kim T. (Ed.)Transcranial direct current stimulation (tDCS) of the cerebellum has rapidly raised interest but the effects of tDCS on cerebellar neurons remain unclear. Assessing the cellular response to tDCS is challenging because of the uneven, highly stratified cytoarchitecture of the cerebellum, within which cellular morphologies, physiological properties, and function vary largely across several types of neurons. In this study, we combine MRI-based segmentation of the cerebellum and a finite element model of the tDCS-induced electric field (EF) inside the cerebellum to determine the field imposed on the cerebellar neurons throughout the region. We then pair the EF with multicompartment models of the Purkinje cell (PC), deep cerebellar neuron (DCN), and granule cell (GrC) and quantify the acute response of these neurons under various orientations, physiological conditions, and sequences of presynaptic stimuli. We show that cerebellar tDCS significantly modulates the postsynaptic spiking precision of the PC, which is expressed as a change in the spike count and timing in response to presynaptic stimuli. tDCS has modest effects, instead, on the PC tonic firing at rest and on the postsynaptic activity of DCN and GrC. In Purkinje cells, anodal tDCS shortens the repolarization phase following complex spikes (-14.7 ± 6.5% of baseline value, mean ± S.D.; max: -22.7%) and promotes burstiness with longer bursts compared to resting conditions. Cathodal tDCS, instead, promotes irregular spiking by enhancing somatic excitability and significantly prolongs the repolarization after complex spikes compared to baseline (+37.0 ± 28.9%, mean ± S.D.; max: +84.3%). tDCS-induced changes to the repolarization phase and firing pattern exceed 10% of the baseline values in Purkinje cells covering up to 20% of the cerebellar cortex, with the effects being distributed along the EF direction and concentrated in the area under the electrode over the cerebellum. Altogether, the acute effects of tDCS on cerebellum mainly focus on Purkinje cells and modulate the precision of the response to synaptic stimuli, thus having the largest impact when the cerebellar cortex is active. Since the spatiotemporal precision of the PC spiking is critical to learning and coordination, our results suggest cerebellar tDCS as a viable therapeutic option for disorders involving cerebellar hyperactivity such as ataxia.more » « less
-
null (Ed.)Abstract Aberrant neural oscillations hallmark numerous brain disorders. Here, we first report a method to track the phase of neural oscillations in real-time via endpoint-corrected Hilbert transform (ecHT) that mitigates the characteristic Gibbs distortion. We then used ecHT to show that the aberrant neural oscillation that hallmarks essential tremor (ET) syndrome, the most common adult movement disorder, can be transiently suppressed via transcranial electrical stimulation of the cerebellum phase-locked to the tremor. The tremor suppression is sustained shortly after the end of the stimulation and can be phenomenologically predicted. Finally, we use feature-based statistical-learning and neurophysiological-modelling to show that the suppression of ET is mechanistically attributed to a disruption of the temporal coherence of the aberrant oscillations in the olivocerebellar loop, thus establishing its causal role. The suppression of aberrant neural oscillation via phase-locked driven disruption of temporal coherence may in the future represent a powerful neuromodulatory strategy to treat brain disorders.more » « less
-
Essential tremor (ET) is among the most prevalent movement disorders, but its origins are elusive. The inferior olivary nucleus (ION) has been hypothesized as the prime generator of tremor because of the pacemaker properties of ION neurons, but structural and functional changes in ION are unlikely under ET. Abnormalities have instead been reported in the cerebello-thalamo-cortical network, including dysfunctions of the GABAergic projections from the cerebellar cortex to the dentate nucleus. It remains unclear, though, how tremor would relate to a dysfunction of cerebellar connectivity. To address this question, we built a computational model of the cortico-cerebello-thalamo-cortical loop. We simulated the effects of a progressive loss of GABA A α 1 -receptor subunits and up-regulation of α 2/3 -receptor subunits in the dentate nucleus, and correspondingly, we studied the evolution of the firing patterns along the loop. The model closely reproduced experimental evidence for each structure in the loop. It showed that an alteration of amplitudes and decay times of the GABAergic currents to the dentate nucleus can facilitate sustained oscillatory activity at tremor frequency throughout the network as well as a robust bursting activity in the thalamus, which is consistent with observations of thalamic tremor cells in ET patients. Tremor-related oscillations initiated in small neural populations and spread to a larger network as the synaptic dysfunction increased, while thalamic high-frequency stimulation suppressed tremor-related activity in thalamus but increased the oscillation frequency in the olivocerebellar loop. These results suggest a mechanism for tremor generation under cerebellar dysfunction, which may explain the origin of ET.more » « less