skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Santhanam, Keshav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Specialized accelerators such as GPUs, TPUs, FPGAs, and custom ASICs have been increasingly deployed to train deep learning models. These accelerators exhibit heterogeneous performance behavior across model architectures. Existing schedulers for clusters of accelerators, which are used to arbitrate these expensive training resources across many users, have shown how to optimize for various multi-job, multiuser objectives, like fairness and makespan. Unfortunately, existing schedulers largely do not consider performance heterogeneity. In this paper, we propose Gavel, a heterogeneity-aware scheduler that systematically generalizes a wide range of existing scheduling policies. Gavel expresses these policies as optimization problems and then systematically transforms these problems into heterogeneity-aware versions using an abstraction we call effective throughput. Gavel then uses a round-based scheduling mechanism to ensure jobs receive their ideal allocation given the target scheduling policy. Gavel’s heterogeneity-aware policies allow a heterogeneous cluster to sustain higher input load, and improve end objectives such as makespan and average job completion time by 1.4⇥ and 3.5⇥ compared to heterogeneity-agnostic policies. 
    more » « less
  2. null (Ed.)
    Cloud providers offer instances with similar compute capabilities (for example, instances with different generations of GPUs like K80s, P100s, V100s) across many regions, availability zones, and on-demand and spot markets, with prices governed independently by individual supplies and demands. In this paper, using machine learning model training as an example application, we explore the potential cost reductions possible by leveraging this cross-cloud instance market. We present quantitative results on how the prices of cloud instances change with time, and how total costs can be decreased by considering this dynamic pricing market. Our preliminary experiments show that a) the optimal instance choice for a model is dependent on both the objective (e.g., cost, time, or combination) and the model’s performance characteristics, b) the cost of moving training jobs between instances is cheap, c) jobs do not need to be preempted more frequently than once a day to leverage the benefits from spot instance price variations, and d) the cost of training a model can be decreased by as much as 3.5× compared to a static policy. We also look at contexts where users specify higherlevel objectives over collections of jobs, show examples of policies for these contexts, and discuss additional challenges involved in making these cost reductions viable. 
    more » « less