Understanding the evolution of satellite galaxies of the Milky Way (MW) and M31 requires modelling their orbital histories across cosmic time. Many works that model satellite orbits incorrectly assume or approximate that the host halo gravitational potential is fixed in time and is spherically symmetric or axisymmetric. We rigorously benchmark the accuracy of such models against the FIRE-2 cosmological baryonic simulations of MW/M31-mass haloes. When a typical surviving satellite fell in ($3.4\!-\!9.7\, \rm {Gyr}$ ago), the host halo mass and radius were typically 26–86 per cent of their values today, respectively. Most of this mass growth of the host occurred at small distances, $r\lesssim 50\, \rm {kpc}$, opposite to dark matter only simulations, which experience almost no growth at small radii. We fit a near-exact axisymmetric gravitational potential to each host at z = 0 and backward integrate the orbits of satellites in this static potential, comparing against the true orbit histories in the simulations. Orbital energy and angular momentum are not well conserved throughout an orbital history, varying by 25 per cent from their current values already $1.6\!-\!4.7\, \rm {Gyr}$ ago. Most orbital properties are minimally biased, ≲10 per cent, when averaged across the satellite population as a whole. However, for a single satellite, the uncertainties are large: recent orbital properties, like the most recent pericentre distance, typically are ≈20 per cent uncertain, while earlier events, like the minimum pericentre or the infall time, are ≈40–80 per cent uncertain. Furthermore, these biases and uncertainties are lower limits, given that we use near-exact host mass profiles at z = 0.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
ABSTRACT Low-mass galaxies are highly susceptible to environmental effects that can efficiently quench star formation. We explore the role of ram pressure in quenching low-mass galaxies ($M_{*}\sim 10^{5}{-}10^{9}\, \rm {M}_{\odot }$) within 2 Mpc of Milky Way (MW) hosts using the FIRE-2 simulations. Ram pressure is highly variable across different environments, within individual MW haloes, and for individual low-mass galaxies over time. The impulsiveness of ram pressure – the maximum ram pressure scaled to the integrated ram pressure prior to quenching – correlates with whether a galaxy is quiescent or star forming. The time-scale between maximum ram pressure and quenching is anticorrelated with impulsiveness, such that high impulsiveness corresponds to quenching time-scales <1 Gyr. Galaxies in low-mass groups ($M_\mathrm{*,host}10^{7}{-}10^{9}\, \rm {M}_{\odot }$) outside of MW haloes experience typical ram pressure only slightly lower than ram pressure on MW satellites, helping to explain effective quenching via group preprocessing. Ram pressure on MW satellites rises sharply with decreasing distance to the host, and, at a fixed physical distance, more recent pericentre passages are typically associated with higher ram pressure because of greater gas density in the inner host halo at late times. Furthermore, the ram pressure and gas density in the inner regions of Local Group-like paired host haloes are higher at small angles off the host galaxy disc compared to isolated hosts. The quiescent fraction of satellites within these low-latitude regions is also elevated in the simulations and observations, signaling possible anisotropic quenching via ram pressure around MW-mass hosts.
-
ABSTRACT The orbits of satellite galaxies encode rich information about their histories. We investigate the orbital dynamics and histories of satellite galaxies around Milky Way (MW)-mass host galaxies using the FIRE-2 cosmological simulations, which, as previous works have shown, produce satellite mass functions and spatial distributions that broadly agree with observations. We first examine trends in orbital dynamics at z = 0, including total velocity, specific angular momentum, and specific total energy: the time of infall into the MW-mass halo primarily determines these orbital properties. We then examine orbital histories, focusing on the lookback time of first infall into a host halo and pericentre distances, times, and counts. Roughly 37 per cent of galaxies with $M_{\rm star}\lesssim 10^7\, {\rm M}_{\odot }$ were ‘pre-processed’ as a satellite in a lower-mass group, typically $\approx 2.7\, {\rm Gyr}$ before falling into the MW-mass halo. Half of all satellites at z = 0 experienced multiple pericentres about their MW-mass host. Remarkably, for most (67 per cent) of these satellites, their most recent pericentre was not their minimum pericentre: the minimum typically was ∼40 per cent smaller and occurred $\sim 6\, {\rm Gyr}$ earlier. These satellites with growing pericentres appear to have multiple origins: for about half, their specific angular momentum gradually increased over time, while for the other half, most rapidly increased near their first apocentre, suggesting that a combination of a time-dependent MW-mass halo potential and dynamical perturbations in the outer halo caused these satellites’ pericentres to grow. Our results highlight the limitations of idealized, static orbit modelling, especially for pericentre histories.
-
Abstract We present the first detailed comparison of populations of dwarf galaxy stellar streams in cosmological simulations and the Milky Way. In particular, we compare streams identified around 13 Milky Way analogs in the FIRE-2 simulations to streams observed by the Southern Stellar Stream Spectroscopic Survey ( S 5 ). For an accurate comparison, we produce mock Dark Energy Survey (DES) observations of the FIRE streams and estimate the detectability of their tidal tails and progenitors. The number and stellar mass distributions of detectable stellar streams is consistent between observations and simulations. However, there are discrepancies in the distributions of pericenters and apocenters, with the detectable FIRE streams, on average, forming at larger pericenters (out to >110 kpc) and surviving only at larger apocenters (≳40 kpc) than those observed in the Milky Way. We find that the population of high-stellar-mass dwarf galaxy streams in the Milky Way is incomplete. Interestingly, a large fraction of the FIRE streams would only be detected as intact satellites in DES-like observations, since their tidal tails have too low surface brightness to be detectable. We thus predict a population of yet-undetected tidal tails around Milky Way satellites, as well as a population of fully undetected low-surface-brightness stellar streams, and estimate their detectability with the Rubin Observatory. Finally, we discuss the causes and implications of the discrepancies between the stream populations in FIRE and the Milky Way, and explore future avenues for tests of satellite disruption in cosmological simulations.more » « less
-
ABSTRACT The star formation and gas content of satellite galaxies around the Milky Way (MW) and Andromeda (M31) are depleted relative to more isolated galaxies in the Local Group (LG) at fixed stellar mass. We explore the environmental regulation of gas content and quenching of star formation in z = 0 galaxies at $M_{*}=10^{5\!-\!10}\, \rm {M}_{\odot }$ around 14 MW-mass hosts from the Feedback In Realistic Environments 2 (FIRE-2) simulations. Lower mass satellites ($M_{*}\lesssim 10^7\, \rm {M}_{\odot }$) are mostly quiescent and higher mass satellites ($M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$) are mostly star forming, with intermediate-mass satellites ($M_{*}\approx 10^{7\!-\!8}\, \rm {M}_{\odot }$) split roughly equally between quiescent and star forming. Hosts with more gas in their circumgalactic medium have a higher quiescent fraction of massive satellites ($M_{*}=10^{8\!-\!9}\, \rm {M}_{\odot }$). We find no significant dependence on isolated versus paired (LG-like) host environments, and the quiescent fractions of satellites around MW-mass and Large Magellanic Cloud (LMC)-mass hosts from the FIRE-2 simulations are remarkably similar. Environmental effects that lead to quenching can also occur as pre-processing in low-mass groups prior to MW infall. Lower mass satellites typically quenched before MW infall as central galaxies or rapidly during infall into a low-mass group or a MW-mass galaxy. Most intermediate- to high-mass quiescent satellites have experienced ≥1–2 pericentre passages (≈2.5–5 Gyr) within a MW-mass halo. Most galaxies with $M_{*}\gtrsim 10^{6.5}\, \rm {M}_{\odot }$ did not quench before falling into a host, indicating a possible upper mass limit for isolated quenching. The simulations reproduce the average trend in the LG quiescent fraction across the full range of satellite stellar masses. Though the simulations are consistent with the Satellites Around Galactic Analogs (SAGA) survey’s quiescent fraction at $M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$, they do not generally reproduce SAGA’s turnover at lower masses.
-
null (Ed.)ABSTRACT In hierarchical structure formation, metal-poor stars in and around the Milky Way (MW) originate primarily from mergers of lower mass galaxies. A common expectation is therefore that metal-poor stars should have isotropic, dispersion-dominated orbits that do not correlate strongly with the MW disc. However, recent observations of stars in the MW show that metal-poor ($\rm {[Fe/H]}\lesssim -2$) stars are preferentially on prograde orbits with respect to the disc. Using the Feedback In Realistic Environments 2 (FIRE-2) suite of cosmological zoom-in simulations of MW/M31-mass galaxies, we investigate the prevalence and origin of prograde metal-poor stars. Almost all (11 of 12) of our simulations have metal-poor stars on preferentially prograde orbits today and throughout most of their history: we thus predict that this is a generic feature of MW/M31-mass galaxies. The typical prograde-to-retrograde ratio is ∼2:1, which depends weakly on stellar metallicity at $\rm {[Fe/H]}\lesssim -1$. These trends predicted by our simulations agree well with MW observations. Prograde metal-poor stars originate largely from a single Large/Small Magellanic Cloud (LMC/SMC)-mass gas-rich merger $7\!-\!12.5\, \rm {Gyr}$ ago, which deposited existing metal-poor stars and significant gas on an orbital vector that sparked the formation of and/or shaped the orientation of a long-lived stellar disc, giving rise to a prograde bias for all low-metallicity stars. We find subdominant contributions from in situ stars formed in the host galaxy before this merger, and in some cases, additional massive mergers. We find few clear correlations between any properties of our MW/M31-mass galaxies at z = 0 and the degree of this prograde bias as a result of diverse merger scenarios.more » « less
-
ABSTRACT Surveys of the Milky Way (MW) and M31 enable detailed studies of stellar populations across ages and metallicities, with the goal of reconstructing formation histories across cosmic time. These surveys motivate key questions for galactic archaeology in a cosmological context: When did the main progenitor of an MW/M31-mass galaxy form, and what were the galactic building blocks that formed it? We investigate the formation times and progenitor galaxies of MW/M31-mass galaxies using the Feedback In Realistic Environments-2 cosmological simulations, including six isolated MW/M31-mass galaxies and six galaxies in Local Group (LG)-like pairs at z = 0. We examine main progenitor ‘formation’ based on two metrics: (1) transition from primarily ex-situ to in-situ stellar mass growth and (2) mass dominance compared to other progenitors. We find that the main progenitor of an MW/M31-mass galaxy emerged typically at z ∼ 3–4 ($11.6\!\!-\!\!12.2\, \rm {Gyr}$ ago), while stars in the bulge region (inner 2 kpc) at z = 0 formed primarily in a single main progenitor at z ≲ 5 (${\lesssim} \!12.6\, \rm {Gyr}$ ago). Compared with isolated hosts, the main progenitors of LG-like paired hosts emerged significantly earlier (Δz ∼ 2, $\Delta t\!\sim \!1.6\, \rm {Gyr}$), with ∼4× higher stellar mass at all z ≳ 4 (${\gtrsim} \!12.2\, \rm {Gyr}$ ago). This highlights the importance of environment in MW/M31-mass galaxy formation, especially at early times. On average, about 100 galaxies with $\rm {\it{ M}}_\rm {star}\!\gtrsim \!10^5\, \rm {M}_\odot$ went into building a typical MW/M31-mass system. Thus, surviving satellites represent a highly incomplete census (by ∼5×) of the progenitor population.more » « less