Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A set of reals isuniversally Baireif all of its continuous preimages in topological spaces have the Baire property.$$\mathsf {Sealing}$$is a type of generic absoluteness condition introduced by Woodin that asserts in strong terms that the theory of the universally Baire sets cannot be changed by forcing. The$$\mathsf {Largest\ Suslin\ Axiom}$$($$\mathsf {LSA}$$) is a determinacy axiom isolated by Woodin. It asserts that the largest Suslin cardinal is inaccessible for ordinal definable bijections. Let$$\mathsf {LSA-over-uB}$$be the statement that in all (set) generic extensions there is a model of$$\mathsf {LSA}$$whose Suslin, co-Suslin sets are the universally Baire sets. We show that over some mild large cardinal theory,$$\mathsf {Sealing}$$is equiconsistent with$$\mathsf {LSA-over-uB}$$. In fact, we isolate an exact large cardinal theory that is equiconsistent with both (see Definition 2.7). As a consequence, we obtain that$$\mathsf {Sealing}$$is weaker than the theory ‘$$\mathsf {ZFC} +$$there is a Woodin cardinal which is a limit of Woodin cardinals’. A variation of$$\mathsf {Sealing}$$, called$$\mathsf {Tower\ Sealing}$$, is also shown to be equiconsistent with$$\mathsf {Sealing}$$over the same large cardinal theory. The result is proven via Woodin’s$$\mathsf {Core\ Model\ Induction}$$technique and is essentially the ultimate equiconsistency that can be proven via the current interpretation of$$\mathsf {CMI}$$as explained in the paper.more » « less
-
This white paper is the result of a collaboration by many of those that attended a workshop at the facility for rare isotope beams (FRIB), organized by the FRIB Theory Alliance (FRIB-TA), on ‘Theoretical Justifications and Motivations for Early High-Profile FRIB Experiments’. It covers a wide range of topics related to the science that will be explored at FRIB. After a brief introduction, the sections address: section 2: Overview of theoretical methods, section 3: Experimental capabilities, section 4: Structure, section 5: Near-threshold Physics, section 6: Reaction mechanisms, section 7: Nuclear equations of state, section 8: Nuclear astrophysics, section 9: Fundamental symmetries, and section 10: Experimental design and uncertainty quantification.more » « lessFree, publicly-accessible full text available May 6, 2026
-
A set of reals is universally Baire if all of its continuous preimages in topological spaces have the Baire property. 𝖲𝖾𝖺𝗅𝗂𝗇𝗀 is a type of generic absoluteness condition introduced by Woodin that asserts in strong terms that the theory of the universally Baire sets cannot be changed by set forcings. The 𝖫𝖺𝗋𝗀𝖾𝗌𝗍 𝖲𝗎𝗌𝗅𝗂𝗇 𝖠𝗑𝗂𝗈𝗆 ( 𝖫𝖲𝖠 ) is a determinacy axiom isolated by Woodin. It asserts that the largest Suslin cardinal is inaccessible for ordinal definable surjections. Let 𝖫𝖲𝖠 - 𝗈𝗏𝖾𝗋 - 𝗎𝖡 be the statement that in all (set) generic extensions there is a model of 𝖫𝖲𝖠 whose Suslin, co-Suslin sets are the universally Baire sets. We outline the proof that over some mild large cardinal theory, 𝖲𝖾𝖺𝗅𝗂𝗇𝗀 is equiconsistent with 𝖫𝖲𝖠 - 𝗈𝗏𝖾𝗋 - 𝗎𝖡 . In fact, we isolate an exact theory (in the hierarchy of strategy mice) that is equiconsistent with both (see Definition 3.1). As a consequence, we obtain that 𝖲𝖾𝖺𝗅𝗂𝗇𝗀 is weaker than the theory “ 𝖹𝖥𝖢 + there is a Woodin cardinal which is a limit of Woodin cardinals.” This significantly improves upon the earlier consistency proof of 𝖲𝖾𝖺𝗅𝗂𝗇𝗀 by Woodin. A variation of 𝖲𝖾𝖺𝗅𝗂𝗇𝗀 , called 𝖳𝗈𝗐𝖾𝗋 𝖲𝖾𝖺𝗅𝗂𝗇𝗀 , is also shown to be equiconsistent with 𝖲𝖾𝖺𝗅𝗂𝗇𝗀 over the same large cardinal theory. We also outline the proof that if V has a proper class of Woodin cardinals, a strong cardinal, and a generically universally Baire iteration strategy, then 𝖲𝖾𝖺𝗅𝗂𝗇𝗀 holds after collapsing the successor of the least strong cardinal to be countable. This result is complementary to the aforementioned equiconsistency result, where it is shown that 𝖲𝖾𝖺𝗅𝗂𝗇𝗀 holds in a generic extension of a certain minimal universe. This theorem is more general in that no minimal assumption is needed. A corollary of this is that 𝖫𝖲𝖠 - 𝗈𝗏𝖾𝗋 - 𝗎𝖡 is not equivalent to 𝖲𝖾𝖺𝗅𝗂𝗇𝗀 .more » « less
-
null (Ed.)We show that if V has a proper class ofWoodin cardinals, a strong cardinal, and a generically universally Baire iteration strategy (as defined in the paper) then Sealing holds after collapsing the successor of the least strong cardinal to be countable. This result is complementary to other work by the authors where it is shown that Sealing holds in a generic extension of a certain minimal universe. The current theorem is more general in that no minimality assumption is needed. A corollary of the main theorem is that Sealing is consistent relative to the existence of a Woodin cardinal which is a limit of Woodin cardinals. This improves significantly on the first consistency of Sealing obtained by W.H. Woodin. The Largest Suslin Axiom (LSA) is a determinacy axiom isolated byWoodin. It asserts that the largest Suslin cardinal is inaccessible for ordinal definable bijections. Let LSA-over-uB be the statement that in all (set) generic extensions there is a model of LSA whose Suslin, co-Suslin sets are the universally Baire sets. The other main result of the paper shows that assuming V has a proper class of inaccessible cardinals which are limit of Woodin cardinals, a strong cardinal, and a generically universally Baire iteration strategy, in the universe V [g], where g is V -generic for the collapse of the successor of the least strong cardinal to be countable, the theory LSA-over-UB fails; this implies that LSA-over-UB is not equivalent to Sealing (over the base theory of V [g]). This is interesting and somewhat unexpected, in light of other work by the authors. Compare this result with Steel’s well-known theorem that “AD in L(R) holds in all generic extensions” is equivalent to “the theory of L(R) is sealed” in the presence of a proper class of measurable cardinals.more » « less