- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
De_Silva, D (2)
-
Savin, O (2)
-
Savin, O. (2)
-
De Silva, D. (1)
-
Forcillo, N. (1)
-
Yu, H. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
De_Silva, D; Savin, O (, Bulletin of the London Mathematical Society)Abstract We develop the free boundary regularity for nonnegative minimizers of the Alt–Phillips functional for negative power potentialsand establish a ‐convergence result of the rescaled energies to the perimeter functional as .more » « less
-
De Silva, D.; Forcillo, N.; Savin, O. (, Calculus of Variations and Partial Differential Equations)
-
Savin, O.; Yu, H. (, Ars inveniendi analytica)We investigate the regularity of the free boundaries in the three elastic membranes problem. We show that the two free boundaries corresponding to the coincidence regions between consecutive membranes are C1,log-hypersurfaces near a regular intersection point. We also study two types of singular intersections. The first type of singular points are locally covered by a C1,alpha-hypersurface. The second type of singular points stratify and each stratum is locally covered by a C1-manifold.more » « less
An official website of the United States government

Full Text Available