skip to main content


Search for: All records

Creators/Authors contains: "Schaefer, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Zn2+, Mg2+and Ca2+are essential divalent cations implicated in many metabolic processes and signalling pathways. An emerging new paradigm is that the organismal balance of these cations predominantly depends on a common gatekeeper, the channel-kinase TRPM7. Despite extensive electrophysiological studies and recent cryo-EM analysis, an open question is how the channel activity of TRPM7 is activated. Here, we performed site-directed mutagenesis of mouse TRPM7 in conjunction with patch-clamp assessment of whole-cell and single-channel activity and molecular dynamics (MD) simulations to show that the side chains of conserved N1097 form an inter-subunit Mg2+regulatory site located in the lower channel gate of TRPM7. Our results suggest that intracellular Mg2+binds to this site and stabilizes the TRPM7 channel in the closed state, whereas the removal of Mg2+favours the opening of TRPM7. Hence, our study identifies the structural underpinnings through which the TRPM7 channel is controlled by cytosolic Mg2+, representing a new structure–function relationship not yet explored among TRPM channels.

     
    more » « less
  2. null (Ed.)
    This study investigated the reaction kinetics on the oxidative transformation of lead( ii ) minerals by free chlorine (HOCl) and free bromine (HOBr) in drinking water distribution systems. According to chemical equilibrium predictions, lead( ii ) carbonate minerals, cerussite PbCO 3(s) and hydrocerussite Pb 3 (CO 3 ) 2 (OH) 2(s) , and lead( ii ) phosphate mineral, chloropyromorphite Pb 5 (PO 4 ) 3 Cl (s) are formed in drinking water distribution systems in the absence and presence of phosphate, respectively. X-ray absorption near edge spectroscopy (XANES) data showed that at pH 7 and a 10 mM alkalinity, the majority of cerussite and hydrocerussite was oxidized to lead( iv ) mineral PbO 2(s) within 120 minutes of reaction with chlorine (3 : 1 Cl 2  : Pb( ii ) molar ratio). In contrast, very little oxidation of chloropyromorphite occurred. Under similar conditions, oxidation of lead( ii ) carbonate and phosphate minerals by HOBr exhibited a reaction kinetics that was orders of magnitude faster than by HOCl. Their end oxidation products were identified as mainly plattnerite β-PbO 2(s) and trace amounts of scrutinyite α-PbO 2(s) based on X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopic analysis. A kinetic model was established based on the solid-phase experimental data. The model predicted that in real drinking water distribution systems, it takes 0.6–1.2 years to completely oxidize Pb( ii ) minerals in the surface layer of corrosion scales to PbO 2(s) by HOCl without phosphate, but only 0.1–0.2 years in the presence of bromide (Br − ) due the catalytic effects of HOBr generation. The model also predicts that the addition of phosphate will significantly inhibit Pb( ii ) mineral oxidation by HOCl, but only be modestly effective in the presence of Br − . This study provides insightful understanding on the effect of residual disinfectant on the oxidation of lead corrosion scales and strategies to prevent lead release from drinking water distribution systems. 
    more » « less