Lead( iv ) oxide PbO 2 is one dominant solid phase in lead corrosion scales of drinking water distribution systems. Understanding the colloidal dispersion of PbO 2 is important for lead control in drinking water, especially under scenarios of switching the residual disinfectant from chlorine to chloramine. This study investigated the changes in lead release and colloidal dispersion from PbO 2(s) associated with the presence of natural organic matter (NOM), the introduction of chloramine, and the addition of a phosphate corrosion inhibitor in drinking water distribution systems. Experimental data showed that when NOM was present, the surface charges of PbO 2 exhibited a prominent negative shift, leading to colloidal dispersion of Pb( iv ) particles. The presence of chloramine did not significantly change the detrimental effects of NOM on the colloidal behavior of PbO 2 . In contrast, the addition of phosphate greatly reduced colloidal lead release in the size range between 0.1 and 0.45 μm, and limited lead release with colloidal sizes less than 0.1 μm to below 15 μg L −1 , i.e. , the U.S. EPA regulatory standard. The beneficial effects of phosphate addition are mainly attributed to the suppression in colloidal dispersion of Pb( iv )more »
Effects of residual disinfectants on the redox speciation of lead( ii )/( iv ) minerals in drinking water distribution systems
This study investigated the reaction kinetics on the oxidative transformation of lead( ii ) minerals by free chlorine (HOCl) and free bromine (HOBr) in drinking water distribution systems. According to chemical equilibrium predictions, lead( ii ) carbonate minerals, cerussite PbCO 3(s) and hydrocerussite Pb 3 (CO 3 ) 2 (OH) 2(s) , and lead( ii ) phosphate mineral, chloropyromorphite Pb 5 (PO 4 ) 3 Cl (s) are formed in drinking water distribution systems in the absence and presence of phosphate, respectively. X-ray absorption near edge spectroscopy (XANES) data showed that at pH 7 and a 10 mM alkalinity, the majority of cerussite and hydrocerussite was oxidized to lead( iv ) mineral PbO 2(s) within 120 minutes of reaction with chlorine (3 : 1 Cl 2 : Pb( ii ) molar ratio). In contrast, very little oxidation of chloropyromorphite occurred. Under similar conditions, oxidation of lead( ii ) carbonate and phosphate minerals by HOBr exhibited a reaction kinetics that was orders of magnitude faster than by HOCl. Their end oxidation products were identified as mainly plattnerite β-PbO 2(s) and trace amounts of scrutinyite α-PbO 2(s) based on X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopic analysis. A kinetic model was more »
- Award ID(s):
- 1653931
- Publication Date:
- NSF-PAR ID:
- 10219614
- Journal Name:
- Environmental Science: Water Research & Technology
- Volume:
- 7
- Issue:
- 2
- Page Range or eLocation-ID:
- 357 to 366
- ISSN:
- 2053-1400
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chlorinated and brominated forms of salicylic acid (SA) have recently been identified as a new class of disinfection byproducts (DBPs) in drinking water. Herein, we report the inherent reactivity of several aqueous halogenating agents toward hydrogen salicylate, the predominant species of salicylic acid under environmental conditions. Using synthetic waters, halogenation rates associated with the formation of 3-chloro, 5-chloro, 3-bromo, and 5-bromosalicylate were measured as a function of pH, [Cl − ], [Br − ], free chlorine dose, and the initial concentration of SA. Halogenating-agent specific second-order rate constants were determined and decrease in the order: BrCl > BrOCl > Br 2 > Br 2 O > Cl 2 > Cl 2 O > HOBr > HOCl. Chloride is capable of enhancing rates of bromination and chlorination, ostensibly by promoting the formation of BrCl and Cl 2 , both of which are several orders of magnitude more inherently reactive than HOBr and HOCl, respectively. Kinetic data also support the participation of salicyloyl hypochlorite as a chlorination intermediate capable of influencing chlorination rates at pH >8. Experiments in which buffer concentrations were varied indicate that phosphate buffers can enhance rates of SA bromination but not chlorination; carbonate and borate buffers did notmore »
-
Lead (Pb) solubility is commonly limited by dissolution–precipitation reactions of secondary mineral phases in contaminated soils and water. In the research described here, Pb solubility and free Pb2+ ion activities were measured following the precipitation of Pb minerals from aqueous solutions containing sulfate or carbonate in a 1:5 mole ratio in the absence and presence of phosphate over the pH range 4.0–9.0. Using X-ray diffraction and Fourier-transform infrared spectroscopic analysis, we identified anglesite formed in sulfate-containing solutions at low pH. At higher pH, Pb carbonate and carbonate-sulfate minerals, hydrocerussite and leadhillite, were formed in preference to anglesite. Precipitates formed in the Pb-carbonate systems over the pH range of 6 to 9 were composed of cerussite and hydrocerussite, with the latter favored only at the highest pH investigated. The addition of phosphate into the Pb-sulfate and Pb-carbonate systems resulted in the precipitation of Pb3(PO4)2 and structurally related pyromorphite minerals and prevented Pb sulfate and carbonate mineral formation. Phosphate increased the efficiency of Pb removal from solution and decreased free Pb2+ ion activity, causing over 99.9% of Pb to be precipitated. Free Pb2+ ion activities measured using the ion-selective electrode revealed lower values than predicted from thermodynamic constants, indicating that the precipitatedmore »
-
This study investigated the effect of bromide on the oxidation of three lead( ii ) solids by chlorine – a redox process critical to the control of lead release in drinking water distribution systems. Bromide had a strong catalytic effect on the oxidation of lead( ii ) carbonate solids, but had a limited impact on the oxidation of lead( ii ) phosphate.
-
Free chlorine and free bromine ( e.g. , HOCl and HOBr) are employed as disinfectants in a variety of aqueous systems, including drinking water, wastewater, ballast water, recreational waters, and cleaning products. Yet, the most widely used methods for quantifying free halogens, including those employing N , N -diethyl- p -phenylenediamine (DPD), cannot distinguish between HOCl and HOBr. Herein, we report methods for selectively quantifying free halogens in a variety of aqueous systems using 1,3,5-trimethoxybenzene (TMB). At near-neutral pH, TMB reacted on the order of seconds with HOCl, HOBr, and inorganic bromamines to yield halogenated products that were readily quantified by liquid chromatography or, following liquid–liquid extraction, gas chromatography-mass spectrometry (GC-MS). The chlorinated and brominated products of TMB were stable, and their molar concentrations were used to calculate the original concentrations of HOCl (method quantitation limit (MQL) by GC-MS = 15 nmol L −1 = 1.1 μg L −1 as Cl 2 ) and HOBr (MQL by GC-MS = 30 nmol L −1 = 2 μg L −1 as Cl 2 ), respectively. Moreover, TMB derivatization was efficacious for quantifying active halogenating agents in drinking water, pool water, chlorinated surface waters, and simulated spa waters treated with 1-bromo-3-chloro-5,5-dimethylhydantoin. TMB wasmore »