skip to main content

Search for: All records

Creators/Authors contains: "Schaumont, Patrick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bitslicing is a software implementation technique that treats an N-bit processor datapath as N parallel single-bit datapaths. Bitslicing is particularly useful to implement data-parallel algorithms, algorithms that apply the same operation sequence to every element of a vector. Indeed, a bit-wise processor instruction applies the same logical operation to every single-bit slice. A second benefit of bitsliced execution is that the natural spatial redundancy of bitsliced software can support countermeasures against fault attacks. A k-redundant program on an N-bit processor then runs as N/k parallel redundant slices. In this contribution, we combine these two benefits of bitslicing to implement a fault countermeasure for the number-theoretic transform (NTT). The NTT eiciently implements a polynomial multiplication. The internal symmetry of the NTT algorithm lends itself to a data-parallel implementation, and hence it is a good candidate for the redundantly bitsliced implementation. We implement a redundantly bitsliced NTT on an advanced 667MHz ARM Cortex-A9 processor, and study the fault coverage for the protected NTT under optimized electromagnetic fault injection (EMFI). Our work brings two major contributions. First, we show for the irst time how to develop a redundantly bitsliced version of the NTT. We integrate the protected NTT into a full Dilithium signature sequence. Second, we demonstrate an EMFI analysis on a prototype implementation of the Dilithium signature sequence on ARM Cortex-M9. We perform a detailed EM fault-injection parameter search to optimize the location, intensity and timing of injected EM pulses. We demonstrate that, under optimized fault injection parameters, about 10% of the injected faults become potentially exploitable. However, the redundantly bitsliced NTT design is able to catch the majority of these potentially exploitable faults, even when the remainder of the Dilithium algorithm as well as the control low is left unprotected. To our knowledge, this is the irst demonstration of a bitslice-redundant design of the NTT that offers distributed fault detection throughout the execution of the algorithm. 
    more » « less
  2. Physical attacks can compromise the security of cryptographic devices. Depending on the attack’s requirements, adversaries might need to (i) place probes in the proximity of the integrated circuits (ICs) package, (ii) create physical connections between their probes/wires and the system’s PCB, or (iii) physically tamper with the PCB’s components, chip’s package, or substitute the entire PCB to prepare the device for the attack. While tamper-proof enclosures prevent and detect physical access to the system, their high manufacturing cost and incompatibility with legacy systems make them unattractive for many low-cost scenarios. In this paper, inspired by methods known from the field of power integrity analysis, we demonstrate how the impedance characterization of the system’s power distribution network (PDN) using on-chip circuit-based network analyzers can detect various classes of tamper events. We explain how these embedded network analyzers, without any modifications to the system, can be deployed on FPGAs to extract the frequency response of the PDN. The analysis of these frequency responses reveals different classes of tamper events from board to chip level. To validate our claims, we run an embedded network analyzer on FPGAs of a family of commercial development kits and perform extensive measurements for various classes of PCB and IC package tampering required for conducting different side-channel or fault attacks. Using the Wasserstein Distance as a statistical metric, we further show that we can confidently detect tamper events. Our results, interestingly, show that even environment-level tampering activities, such as the proximity of contactless EM probes to the IC package or slightly polished IC package, can be detected using on-chip impedance sensing. 
    more » « less
  3. For many years there has been an arms race between designers and adversaries of secure hardware. Improvements in the strategies for attack spur new defense techniques, and better defenses lead to improved attacks. In this contribution, first, we examine the technological dimensions of this arms race. While defenders benefit from increased circuit density and decreasing feature size, attackers benefit from novel side-channel attack vectors based on optical and electromagnetic interactions with their target. Second, we analyze the feasibility and applicability of various side-channel attacks on primary units of cryptographic hardware. We also discuss the required time, cost, and expertise to mount these attacks. We then examine how well modern defense methods are capable of thwarting modern attack methods. 
    more » « less
  4. Side-channel attacks that leak sensitive information through a computing device's interaction with its physical environment have proven to be a severe threat to devices' security, particularly when adversaries have unfettered physical access to the device. Traditional approaches for leakage detection measure the physical properties of the device. Hence, they cannot be used during the design process and fail to provide root cause analysis. An alternative approach that is gaining traction is to automate leakage detection by modeling the device. The demand to understand the scope, benefits, and limitations of the proposed tools intensifies with the increase in the number of proposals. In this SoK, we classify approaches to automated leakage detection based on the model's source of truth. We classify the existing tools on two main parameters: whether the model includes measurements from a concrete device and the abstraction level of the device specification used for constructing the model. We survey the proposed tools to determine the current knowledge level across the domain and identify open problems. In particular, we highlight the absence of evaluation methodologies and metrics that would compare proposals' effectiveness from across the domain. We believe that our results help practitioners who want to use automated leakage detection and researchers interested in advancing the knowledge and improving automated leakage detection. 
    more » « less
  5. Motivated by the rise of quantum computers, existing public-key cryptosystems are expected to be replaced by post-quantum schemes in the next decade in billions of devices. To facilitate the transition, NIST is running a standardization process which is currently in its final Round. Only three digital signature schemes are left in the competition, among which Dilithium and Falcon are the ones based on lattices. Besides security and performance, significant attention has been given to resistance against implementation attacks that target side-channel leakage or fault injection response. Classical fault attacks on signature schemes make use of pairs of faulty and correct signatures to recover the secret key which only works on deterministic schemes. To counter such attacks, Dilithium offers a randomized version which makes each signature unique, even when signing identical messages. In this work, we introduce a novel Signature Correction Attack which not only applies to the deterministic version but also to the randomized version of Dilithium and is effective even on constant-time implementations using AVX2 instructions. The Signature Correction Attack exploits the mathematical structure of Dilithium to recover the secret key bits by using faulty signatures and the public-key. It can work for any fault mechanism which can induce single bit-flips. For demonstration, we are using Rowhammer induced faults. Thus, our attack does not require any physical access or special privileges, and hence could be also implemented on shared cloud servers. Using Rowhammer attack, we inject bit flips into the secret key s1 of Dilithium, which results in incorrect signatures being generated by the signing algorithm. Since we can find the correct signature using our Signature Correction algorithm, we can use the difference between the correct and incorrect signatures to infer the location and value of the flipped bit without needing a correct and faulty pair. To quantify the reduction in the security level, we perform a thorough classical and quantum security analysis of Dilithium and successfully recover 1,851 bits out of 3,072 bits of secret key $s_{1}$ for security level 2. Fully recovered bits are used to reduce the dimension of the lattice whereas partially recovered coefficients are used to to reduce the norm of the secret key coefficients. Further analysis for both primal and dual attacks shows that the lattice strength against quantum attackers is reduced from 2128 to 281 while the strength against classical attackers is reduced from 2141 to 289. Hence, the Signature Correction Attack may be employed to achieve a practical attack on Dilithium (security level 2) as proposed in Round 3 of the NIST post-quantum standardization process. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)
  9. null (Ed.)
    As continuous health monitoring and treatment outside of the traditional clinical environment has become of interest to healthcare providers and governments, the manufacturers of miniaturized wireless biomedical devices have sought to facilitate this idea. Much research has been devoted to smart-and-connected health technologies of various form factors including injectables, implantables, ingestibles, and wearables. Such devices are constrained in physical size, power-consumption budget, storage capacity, and computing power. Yet, they handle sensitive, private information and require trust as they directly affect the health of the patient by means of stimulation and/or drug delivery. In this work, we discuss the role of security as a fundamental component of these devices. We propose a generic layered model to support lightweight and cost-effective implementation of data security and protection mechanisms against possible attacks. 
    more » « less