Stealthy chip-level tamper attacks, such as hardware Trojan insertions or security-critical circuit modifications, can threaten modern microelectronic systems’ security. While traditional inspection and side-channel methods offer potential for tamper detection, they may not reliably detect all forms of attacks and often face practical limitations in terms of scalability, accuracy, or applicability. This work introduces a non-invasive, contactless tamper detection method employing a complementary split-ring resonator (CSRR). CSRRs, which are typically deployed for non-destructive material characterization, can be placed on the surface of the chip’s package to detect subtle variations in the impedance of the chip’s power delivery network (PDN) caused by tampering. The changes in the PDN’s impedance profile perturb the local electric near field and consequently affect the sensor’s impedance. These changes manifest as measurable variations in the sensor’s scattering parameters. By monitoring these variations, our approach enables robust and cost-effective physical integrity verification requiring neither physical contact with the chips or printed circuit board (PCB) nor activation of the underlying malicious circuits. To validate our claims, we demonstrate the detection of various chip-level tamper events on an FPGA manufactured with 28 nm technology.
more »
« less
ImpedanceVerif: On-Chip Impedance Sensing for System-Level Tampering Detection
Physical attacks can compromise the security of cryptographic devices. Depending on the attack’s requirements, adversaries might need to (i) place probes in the proximity of the integrated circuits (ICs) package, (ii) create physical connections between their probes/wires and the system’s PCB, or (iii) physically tamper with the PCB’s components, chip’s package, or substitute the entire PCB to prepare the device for the attack. While tamper-proof enclosures prevent and detect physical access to the system, their high manufacturing cost and incompatibility with legacy systems make them unattractive for many low-cost scenarios. In this paper, inspired by methods known from the field of power integrity analysis, we demonstrate how the impedance characterization of the system’s power distribution network (PDN) using on-chip circuit-based network analyzers can detect various classes of tamper events. We explain how these embedded network analyzers, without any modifications to the system, can be deployed on FPGAs to extract the frequency response of the PDN. The analysis of these frequency responses reveals different classes of tamper events from board to chip level. To validate our claims, we run an embedded network analyzer on FPGAs of a family of commercial development kits and perform extensive measurements for various classes of PCB and IC package tampering required for conducting different side-channel or fault attacks. Using the Wasserstein Distance as a statistical metric, we further show that we can confidently detect tamper events. Our results, interestingly, show that even environment-level tampering activities, such as the proximity of contactless EM probes to the IC package or slightly polished IC package, can be detected using on-chip impedance sensing.
more »
« less
- Award ID(s):
- 2117349
- PAR ID:
- 10413448
- Publisher / Repository:
- IACR
- Date Published:
- Journal Name:
- IACR Transactions on Cryptographic Hardware and Embedded Systems
- ISSN:
- 2569-2925
- Page Range / eLocation ID:
- 301 to 325
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The security of printed circuit boards (PCBs) has become increasingly vital as supply chain vulnerabilities, including tampering, present significant risks to electronic systems. While detecting tampering on a PCB is the first step for verification, forensics is also needed to identify the modified component. One non-invasive and reliable PCB tamper detection technique with global coverage is the impedance characterization of PCB's power delivery network (PDN). However, it is an open question whether one can use the two-dimensional impedance signatures for forensics purposes. In this work, we introduce a novel PCB forensics approach, using explainable AI (XAI) on impedance signatures. Through extensive experiments, we replicate various PCB tamper events, generating a dataset used to develop an XAI algorithm capable of not only detecting tampering but also explaining why the algorithm makes a decision about whether a tamper event has happened. At the core of our XAI algorithm is a random forest classifier with an accuracy of 96.7%, sufficient to explain the algorithm's decisions. To understand the behavior of the classifier In the decision-making process, we utilized the SHAP values as an XAI tool to determine which frequency component influences the classifier's decision for a particular class the most. This approach enhances detection capabilities as well as advancing the verifier's ability to reverse-engineer and analyze two-dimensional impedance signatures for forensics.more » « less
-
The increasing complexity and cost of manufacturing monolithic chips have driven the semiconductor industry toward chiplet-based designs, where smaller, modular chiplets are integrated onto a single interposer. While chiplet architectures offer significant advantages, such as improved yields, design flexibility, and cost efficiency, they introduce new security challenges in the horizontal hardware manufacturing supply chain. These challenges include risks of hardware Trojans, cross-die side-channel and fault injection attacks, probing of chiplet interfaces, and intellectual property theft. To address these concerns, this paper presents ChipletQuake, a novel on-chiplet framework for verifying the physical security and integrity of adjacent chiplets during the post-silicon stage. By sensing the impedance of the power delivery network (PDN) of the system, ChipletQuake detects tamper events in the interposer and neighboring chiplets without requiring any direct signal interface or additional hardware components. Fully compatible with the digital resources of FPGA-based chiplets, this framework demonstrates the ability to identify the insertion of passive and subtle malicious circuits, providing an effective solution to enhance the security of chiplet-based systems. To validate our claims, we showcase how our framework detects hardware Trojans and interposer tampering.more » « less
-
The threats of physical side-channel attacks and their countermeasures have been widely researched. Most physical side-channel attacks rely on the unavoidable influence of computation or storage on current consumption or voltage drop on a chip. Such data-dependent influence can be exploited by, for instance, power or electromagnetic analysis. In this work, we introduce a novel non-invasive physical side-channel attack, which exploits the data-dependent changes in the impedance of the chip. Our attack relies on the fact that the temporarily stored contents in registers alter the physical characteristics of the circuit, which results in changes in the die's impedance. To sense such impedance variations, we deploy a well-known RF/microwave method called scattering parameter analysis, in which we inject sine wave signals with high frequencies into the system's power distribution network (PDN) and measure the echo of the signals. We demonstrate that according to the content bits and physical location of a register, the reflected signal is modulated differently at various frequency points enabling the simultaneous and independent probing of individual registers. Such side-channel leakage challenges the t-probing security model assumption used in masking, which is a prominent side-channel countermeasure. To validate our claims, we mount non-profiled and profiled impedance analysis attacks on hardware implementations of unprotected and high-order masked AES. We show that in the case of the profiled attack, only a single trace is required to recover the secret key. Finally, we discuss how a specific class of hiding countermeasures might be effective against impedance leakage.more » « less
-
In this paper, we present the characterization of pre-formed resistive random access memories to design physical unclonable functions and experimentally validate inherent properties such as tamper sensitivity and a self-destroy mode. The physical unclonable functions were tested for repetitive use, temperature effects, and aging. The variations during successive response generation cycles and drift rates are quantized to explore their reliability. We define tamper-sensitivity as the ability to detect tampering attacks. To establish tamper sensitivity, the cells were characterized for higher current sweeps, and the injected current at which they break down is extracted and analyzed to determine suitable operating ranges. Our experimental results show that at least 91% of the cells can generate keys protected by the scheme, while 22% of the sensing elements are triggered. Finally, the cells were characterized for high Voltage sweeps to be able to destroy the physical unclonable functions on-demand when tampering activity is detected. A fixed Voltage of 1.9 V is enough to destroy the entire array.more » « less
An official website of the United States government

