skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schilling, Keith"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Neonicotinoid insecticides are widely used in both urban and agricultural settings around the world. Historically, neonicotinoid insecticides have been viewed as ideal replacements for more toxic compounds, like organophosphates, due in part to their perceived limited potential to affect the environment and human health. This critical review investigates the environmental fate and toxicity of neonicotinoids and their metabolites and the potential risks associated with exposure. Neonicotinoids are found to be ubiquitous in the environment, drinking water, and food, with low-level exposure commonly documented below acceptable daily intake standards. Available toxicological data from animal studies indicate possible genotoxicity, cytotoxicity, impaired immune function, and reduced growth and reproductive success at low concentrations, while limited data from ecological or cross-sectional epidemiological studies have identified acute and chronic health effects ranging from acute respiratory, cardiovascular, and neurological symptoms to oxidative genetic damage and birth defects. Due to the heavy use of neonicotinoids and potential for cumulative chronic exposure, these insecticides represent novel risks and necessitate further study to fully understand their risks to humans. 
    more » « less
  4. Abstract Baseflow is an essential water resource because it is the groundwater discharged to streams and represents long‐term storage. Understanding its future changes is a major concern for water supply and ecosystem health. This study examines the impacts of climate and agriculture on monthly baseflow in the U.S. Midwest through the end of the 21st century. We use a statistical approach to evaluate three scenarios. The first scenario is based on downscaled and bias corrected global climate model (GCM) outputs and the representative concentration pathway (RCP) 8.5, and agriculture is held constant (and equal to the mean from 2013 to 2019). In the next two scenarios, climate is held constant (2010–2019) to isolate the impact of agriculture on baseflow. In terms of agricultural changes, we consider scenarios representative of either increases or decreases with respect to the production of corn and soybeans. Changes in the climate system point to increases in baseflow that are likely a result of increased precipitation and antecedent wetness. Seasonally, warmer temperature in the winter and spring (i.e., February to July) is expected to cause increasing trends in baseflow. Changes in land use showed that agriculture would either mitigate the impact of climate change or possibly amplify it. Expanding corn and soybean areas would increase baseflow in the Corn Belt region. On the other hand, converting land back to perennial vegetation would decrease baseflow throughout the entire year. Despite its simplicity, this study can provide basic information to understand where to expect adverse effects on baseflow and thus improve land management practices in those areas. 
    more » « less
  5. Abstract While spatial heterogeneity of riverine nitrogen (N) loading is predominantly driven by the magnitude of basin‐wide anthropogenic N input, the temporal dynamics of N loading are closely related to the amount and timing of precipitation. However, existing studies do not disentangle the contributions of heavy precipitation versus non‐heavy precipitation predicted by future climate scenarios. Here, we explore the potential responses of N loading from the Mississippi Atchafalaya River Basin to precipitation changes using a well‐calibrated hydro‐ecological model and Coupled Model Intercomparison Project Phase 5 climate projections under two representative concentration pathway (RCP) scenarios. With present agricultural production and management practices, N loading could increase up to 30% by the end of the 21st century under future climate scenarios, half of which would be driven by heavy precipitation. Particularly, the RCP8.5 scenario, in which heavy precipitation and drought events become more frequent, would increase N loading disproportionately to projected increases in river discharge. N loading in spring would contribute 41% and 51% of annual N loading increase under the RCP4.5 and RCP8.5 scenarios, respectively, most of which is related to higher N yield due to increases in heavy precipitation. Anthropogenic N inputs would be increasingly susceptible to leaching loss in the Midwest and the Mississippi Alluvial Plain regions. Our results imply that future climate change alone, including more frequent and intense precipitation extremes, would increase N loading and intensify the eutrophication of the Gulf of Mexico over this coming century. More effective nutrient management interventions are needed to reverse this trend. 
    more » « less
  6. Abstract Characterizing streamflow changes in the agricultural U.S. Midwest is critical for effective planning and management of water resources throughout the region. The objective of this study is to determine if and how baseflow has responded to land alteration and climate changes across the study area during the 50‐year study period by exploring hydrologic variations based on long‐term stream gage data. This study evaluates monthly contributions to annual baseflow along with possible trends over the 1966–2016 period for 458 U.S. Geological Survey streamflow gages within 12 different Midwestern states. It also examines the influence of climate and land use factors on the observed baseflow trends. Monthly contribution breakdowns demonstrate how the majority of baseflow is discharged into streams during the spring months (March, April, and May) and is overall more substantial throughout the spring (especially in April) and summer (June, July, and August). Baseflow has not remained constant over the study period, and the results of the trend detection from the Mann–Kendall test reveal that baseflows have increased and are the strongest from May to September. This analysis is confirmed by quantile regression, which suggests that for most of the year, the largest changes are detected in the central part of the distribution. Although increasing baseflow trends are widespread throughout the region, decreasing trends are few and limited to Kansas and Nebraska. Further analysis reveals that baseflow changes are being driven by both climate and land use change across the region. Increasing trends in baseflow are linked to increases in precipitation throughout the year and are most prominent during May and June. Changes in agricultural intensity (in terms of harvested corn and soybean acreage) are linked to increasing trends in the central and western Midwest, whereas increasing temperatures may lead to decreasing baseflow trends in spring and summer in northern Wisconsin, Kansas, and Nebraska. 
    more » « less