skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schmidt, Ashley"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this Article, we explore how the chemical pressure (CP) features of an intermetallic phase may provide opportunities to couple perturbations in electron count with the stabilization of the underlying geometrical structure. AuCu3‐type LnGa3 (Ln = lanthanide or group 3 metal) phases contain octahedral cavities of negative CP held open by overly compressed Ln–Ga interactions, leading to a series of transition metal‐stuffed derivatives. We present new additions to this family with the synthesis and crystal structures of Dy4T1−xGa12 with (T, x) = (Ag, 0.29) and (Ir, 0.15), adopting Y4PdGa12‐type superstructures of the AuCu3‐type. Density Functional Theory (DFT)‐CP calculations, when adjusted to avoid dipolar CP features, affirm that T atom incorporation provides a mechanism for the relief of packing tensions, while electronic density of states distributions illustrate that the T atoms serve largely as electron or hole donors to the band structure, as needed for them to attain d10 configurations. The maximum obtainable value for x may be limited by a mismatch between the Fermi energy and pseudogap, in line with the balance of factors envisioned by the frustrated and allowed structural transitions principle. Trends in resistivity measurements on T = Ir, Pd, and Ag compounds are interpretable in terms of the varying degrees of disorder arising from x< 1.0. 
    more » « less
    Free, publicly-accessible full text available July 22, 2026
  2. Meaningful discourse in the mathematics classroom involves creating a learning community that empowers students to articulate their reasoning and make sense of the contributions of their peers while advancing the learning of mathematics for the entire class. This study assessed the degree to which secondary mathematics (Grades 7–12) teacher candidates incorporated discourse into their lessons and the factors influencing their decisions. An explanatory mixed methods design was used, in which data were collected sequentially. Lesson videos were analyzed, followed by interviews of teacher candidates with high-discourse lessons. This study found that participants showed significant growth in their use of effective teaching practices from the beginning of the semester to the end of the semester, including mathematics discourse. The interviews revealed four contributing factors: intentional effort, learning experiences, professional relationships, and pedagogical knowledge. Understanding the experiences of teacher candidates during their own learning of mathematics, their mathematical identities, and beliefs about mathematics could help generate knowledge regarding the implementation of mathematics discourse and other reform-based practices in teacher instruction. 
    more » « less
  3. Quantitative data for Mathematics Discourse in Secondary Teacher Candidates’ Lessons: A Mixed Methods Analysis. 
    more » « less
  4. This paper examines how 17 secondary mathematics teacher candidates (TCs) in four university teacher preparation programs implemented technology in their classrooms to teach for conceptual understanding in online, hybrid, and face to face classes during COVID-19. Using the Professional Development: Research, Implementation, and Evaluation (PrimeD) framework, TCs, classroom mentor teachers, field experience supervisors, and university faculty formed a Networked Improvement Community (NIC) to discuss a commonly agreed upon problem of practice and a change idea to implement in the classroom. Through Plan-Do-Study-Act cycles, participants documented their improvement efforts and refinements to the change idea and then reported back to the NIC at the subsequent monthly meeting. The Technology Pedagogical Content Knowledge framework (TPACK) and the TPACK levels rubric were used to examine how teacher candidates implemented technology for Mathematics conceptual understanding. The Mathematics Classroom Observation Protocol for Practices (MCOP2) was used to further examine how effective mathematics teaching practices (e.g., student engagement) were implemented by TCs. MCOP2 results indicated that TCs increased their use of effective mathematics teaching practices. However, growth in TPACK was not significant. A relationship between TPACK and MCOP2 was not evident, indicating a potential need for explicit focus on using technology for mathematics conceptual understanding. 
    more » « less