skip to main content

Search for: All records

Creators/Authors contains: "Schmidt, Carl"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Decline and recovery timescales surrounding eclipse are indicative of the controlling physical processes in Io’s atmosphere. Recent studies have established that the majority of Io’s molecular atmosphere, SO2and SO, condenses during its passage through Jupiter’s shadow. The eclipse response of Io’s atomic atmosphere is less certain, having been characterized solely by ultraviolet aurorae. Here we explore the response of optical aurorae for the first time. We find oxygen to be indifferent to the changing illumination, with [Oi] brightness merely tracking the plasma density at Io’s position in the torus. In shadow, line ratios confirm sparse SO2coverage relative to O, since their collisions would otherwise quench the emission. Io’s sodium aurora mostly disappears in eclipse and e-folding timescales, for decline and recovery differ sharply: ∼10 minutes at ingress and nearly 2 hr at egress. Only ion chemistry can produce such a disparity; Io’s molecular ionosphere is weaker at egress due to rapid recombination. Interruption of a NaCl+photochemical pathway best explains Na behavior surrounding eclipse, implying that the role of electron impact ionization is minor relative to photons. Auroral emission is also evident from potassium, confirming K as the major source of far red emissions seen with spacecraft imaging at Jupiter.more »In all cases, direct electron impact on atomic gas is sufficient to explain the brightness without invoking significant dissociative excitation of molecules. Surprisingly, the nonresponse of O and rapid depletion of Na is opposite the temporal behavior of their SO2and NaCl parent molecules during Io’s eclipse phase.

    « less
  2. Abstract

    Aside from the well-studied sodium doublet, the potassium D lines are the only optical emissions in Mercury's exosphere that are amply bright to contrast with the dayside disk. Measurements of the K exosphere are limited compared to Na, but the K regolith abundance is better constrained, so new insights may help to understand surface–exosphere coupling. We use imaging spectroscopy to map the K brightness over Mercury's evening hemisphere, which shows an enhancement at low to midlatitudes, well equatorward of the Na peak. Both Na and K are brighter in the south, but the ratio between northern and southern hemisphere K emission appears less symmetric than that of Na. The disk-averaged Na/K column density ratio is between 70 and 130. During the same night, the dayside emission was mapped, we used a high-resolution spectrograph to attempt to resolve the Na and K line widths on the nightside. Forward-modeling the alkaline line profiles with hyperfine structure gives Na D1 and D2 line widths of 1114 ± 50 K and 1211 ± 45 K, respectively. D2 may appear hotter solely because its higher opacity adds preferentially to the profile wings. The K line width is surprisingly cold and cannot be easily distinguishedmore »from the instrumental line width, even atR= 137,500. Line widths roughly constrain K gas between the surface temperature and 1000 K, making it the coldest metallic constituent of Mercury's exosphere. Although Na and K are chemical analogs and often assumed to have similar properties, the results herein illustrate quite different characteristics between these elements in Mercury's exosphere.

    « less
  3. Sissa (Ed.)
    We discuss recent CTEQ-TEA group activities after the publication of the CT18 global analysis of parton distribution functions (PDFs) in the proton. In particular, we discuss a new calculation for the photon content in the proton, termed as CT18lux and CT18qed PDFs, and the impact of novel charm- and bottom-quark production cross section measurements at HERA on the CT18 global analysis.
  4. Abstract

    We investigate the parton distribution function (PDF) uncertainty in the measurement of the effective weak mixing angleat the CERN Large Hadron Collider (LHC). The PDF-induced uncertainty is large in proton-proton collisions at the LHC due to the dilution effect. The measurement of the Drell-Yan forward-backward asymmetry () at the LHC can be used to reduce the PDF uncertainty in themeasurement. However, when including the full mass range of lepton pairs in thedata analysis, the correlation between the PDF updating procedure and theextraction leads to a sizable bias in the obtainedvalue. From our studies, we find that the bias can be significantly reduced by removing Drell-Yan events with invariant mass around theZ-pole region, while most of the sensitivity in reducing the PDF uncertainty remains. Furthermore, the lepton charge asymmetry in theWboson events as a function of the rapidity of the charged leptons,, is known to be another observable which can be used to reduce the PDF uncertainty in themeasurement. The constraint fromis complementary to that from, and thus no bias affects theextraction. The studies are performed using themore »error PDF Updating Method Package (ePump), which is based on Hessian updating methods. In this article, the CT14HERA2 PDF set is used as an example.

    « less
  5. Synopsis The 2020 SICB Society-wide Symposium “Building Bridges from Genome to Phenome: Molecules, Methods and Models” brought together a diverse group of scientists to discuss recent progress in linking phenotype plasticity to changes at the level of the genome, epigenome, and proteome, while exploring the boundaries between variation and speciation. In a follow-up workshop, participants were asked to assess strengths and weaknesses of current approaches, to identify common barriers inhibiting their progress, and to outline the resources needed to overcome those barriers. Discussion groups generally recognized the absence of any overarching theoretical framework underlying current genome to phenome research and, therefore, called for a new emphasis on the development of conceptual models as well as the interdisciplinary collaborations needed to create and test those models. Participants also recognized a critical need for new and improved molecular and bioinformatic approaches to assist in describing function/phenotypes across phylogeny. Additionally, like all scientific endeavors, progress in genome to phenome research will be enhanced by improvements in science education and communication both within and among working groups.