Stratospheric ozone, and its response to anthropogenic forcings, provides an important pathway for the coupling between atmospheric composition and climate. In addition to stratospheric ozone’s radiative impacts, recent studies have shown that changes in the ozone layer due to 4xCO2have a considerable impact on the Northern Hemisphere (NH) tropospheric circulation, inducing an equatorward shift of the North Atlantic jet during boreal winter. Using simulations produced with the NASA Goddard Institute for Space Studies (GISS) high-top climate model (E2.2), we show that this equatorward shift of the Atlantic jet can induce a more rapid weakening of the Atlantic meridional overturning circulation (AMOC). The weaker AMOC, in turn, results in an eastward acceleration and poleward shift of the Atlantic and Pacific jets, respectively, on longer time scales. As such, coupled feedbacks from both stratospheric ozone and the AMOC result in a two-time-scale response of the NH midlatitude jet to abrupt 4xCO2forcing: a “fast” response (5–20 years) during which it shifts equatorward and a “total” response (∼100–150 years) during which the jet accelerates and shifts poleward. The latter is driven by a weakening of the AMOC that develops in response to weaker surface zonal winds that result in reduced heat fluxes out of the subpolar gyre and reduced North Atlantic Deep Water formation. Our results suggest that stratospheric ozone changes in the lower stratosphere can have a surprisingly powerful effect on the AMOC, independent of other aspects of climate change.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available May 15, 2025 -
Trawling the seafloor can disturb carbon that took millennia to accumulate, but the fate of that carbon and its impact on climate and ecosystems remains unknown. Using satellite-inferred fishing events and carbon cycle models, we find that 55-60% of trawling-induced aqueous CO2is released to the atmosphere over 7-9 years. Using recent estimates of bottom trawling’s impact on sedimentary carbon, we found that between 1996-2020 trawling could have released, at the global scale, up to 0.34-0.37 Pg CO2yr-1to the atmosphere, and locally altered water pH in some semi-enclosed and heavy trawled seas. Our results suggest that the management of bottom-trawling efforts could be an important climate solution.
Free, publicly-accessible full text available January 18, 2025 -
Abstract In the early Pleistocene, global temperature cycles predominantly varied with ~41‐kyr (obliquity‐scale) periodicity. Atmospheric greenhouse gas concentrations likely played a role in these climate cycles; marine sediments provide an indirect geochemical means to estimate early Pleistocene CO2. Here we present a boron isotope‐based record of continuous high‐resolution surface ocean pH and inferred atmospheric CO2changes. Our results show that, within a window of time in the early Pleistocene (1.38–1.54 Ma), pCO2varied with obliquity, confirming that, analogous to late Pleistocene conditions, the carbon cycle and climate covaried at ~1.5 Ma. Pairing the reconstructed early Pleistocene pCO2amplitude (92 ± 13 μatm) with a comparably smaller global surface temperature glacial/interglacial amplitude (3.0 ± 0.5 K) yields a surface temperature change to CO2radiative forcing ratio of
S [CO2]~0.75 (±0.5) °C−1·W−1·m−2, as compared to the late PleistoceneS [CO2]value of ~1.75 (±0.6) °C−1·W−1·m−2. This direct comparison of pCO2and temperature implicitly incorporates the large ice sheet forcing as an internal feedback and is not directly applicable to future warming. We evaluate this result with a simple climate model and show that the presumably thinner, though extensive, northern hemisphere ice sheets would increase surface temperature sensitivity to radiative forcing. Thus, the mechanism to dampen actual temperature variability in the early Pleistocene more likely lies with Southern Ocean circulation dynamics or antiphase hemispheric forcing. We also compile this new carbon dioxide record with published Plio‐Pleistocene δ11B records using consistent boundary conditions and explore potential reasons for the discrepancy between Pliocene pCO2based on different planktic foraminifera. -
Abstract Coral oxygen isotopes (δ18O) from the central equatorial Pacific provide monthly resolved records of El Niño‐Southern Oscillation activity over past centuries to millennia. However, calibration studies using
in situ data to assess the relative contributions of warming and freshening to coral δ18O records are exceedingly rare. Furthermore, the fidelity of coral δ18O records under the most severe thermal stress events is difficult to assess. Here, we present six coral δ18O records andin situ temperature, salinity, and seawater δ18O data from Kiritimati Island (2°N, 157°W) spanning the very strong 2015/16 El Niño event. Local sea surface temperature (SST) anomalies of +2.4 ± 0.4°C and seawater δ18O anomalies of −0.19 ± 0.02‰ contribute to the observed coral δ18O anomalies of −0.58 ± 0.05‰, consistent with a ∼70% contribution from SST and ∼30% from seawater δ18O. Our results demonstrate that Kiritimati coral δ18O records can provide reliable reconstructions even during the largest class of El Niño events. -
Abstract We compare equilibrium climate sensitivity (ECS) estimates from pairs of long (≥800‐year) control and abruptly quadrupled CO2simulations with shorter (150‐ and 300‐year) coupled atmosphere‐ocean simulations and slab ocean models (SOMs). Consistent with previous work, ECS estimates from shorter coupled simulations based on annual averages for years 1–150 underestimate those from SOM (−8% ± 13%) and long (−14% ± 8%) simulations. Analysis of only years 21–150 improved agreement with SOM (−2% ± 14%) and long (−8% ± 10%) estimates. Use of pentadal averages for years 51–150 results in improved agreement with long simulations (−4% ± 11%). While ECS estimates from current generation U.S. models based on SOM and coupled annual averages of years 1–150 range from 2.6°C to 5.3°C, estimates based longer simulations of the same models range from 3.2°C to 7.0°C. Such variations between methods argues for caution in comparison and interpretation of ECS estimates across models.
-
Abstract We outline a new and improved uncertainty analysis for the Goddard Institute for Space Studies Surface Temperature product version 4 (GISTEMP v4). Historical spatial variations in surface temperature anomalies are derived from historical weather station data and ocean data from ships, buoys, and other sensors. Uncertainties arise from measurement uncertainty, changes in spatial coverage of the station record, and systematic biases due to technology shifts and land cover changes. Previously published uncertainty estimates for GISTEMP included only the effect of incomplete station coverage. Here, we update this term using currently available spatial distributions of source data, state‐of‐the‐art reanalyses, and incorporate independently derived estimates for ocean data processing, station homogenization, and other structural biases. The resulting 95% uncertainties are near 0.05 °C in the global annual mean for the last 50 years and increase going back further in time reaching 0.15 °C in 1880. In addition, we quantify the benefits and inherent uncertainty due to the GISTEMP interpolation and averaging method. We use the total uncertainties to estimate the probability for each record year in the GISTEMP to actually be the true record year (to that date) and conclude with 87% likelihood that 2016 was indeed the hottest year of the instrumental period (so far).