Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Extending and safeguarding tropical forest ecosystems is critical for combating climate change and biodiversity loss. One of its constituents, lianas, is spreading and increasing in abundance on a global scale. This is particularly concerning as lianas negatively impact forests’ carbon fluxes, dynamics, and overall resilience, potentially exacerbating both crises. While possibly linked to climate-change-induced atmospheric CO2elevation and drought intensification, the reasons behind their increasing abundance remain elusive. Prior research shows distinct physiological differences between lianas and trees, but it is unclear whether these differences confer a demographic advantage to lianas with climate change. Guided by extensive datasets collected in Panamanian tropical forests, we developed a tractable model integrating physiology, demography, and epidemiology. Our findings suggest that CO2fertilization, a climate change factor promoting forest productivity, gives lianas a demographic advantage. Conversely, factors such as extreme drought generally cause a decrease in liana prevalence. Such a decline in liana prevalence is expected from a physiological point of view because lianas have drought-sensitive traits. However, our analysis underscores the importance of not exclusively relying on physiological processes, as interactions with demographic mechanisms (i.e., the forest structure) can contrast these expectations, causing an increase in lianas with drought. Similarly, our results emphasize that identical physiological responses between lianas and trees still lead to liana increase. Even if lianas exhibit collinear but weaker responses in their performance compared to trees, a temporary liana prevalence increase might manifest driven by the faster response time of lianas imposed by their distinct life-history strategies than trees.more » « lessFree, publicly-accessible full text available August 20, 2025
-
Lianas are major contributors to tropical forest dynamics, yet we know little about their mortality. Using overlapping censuses of the lianas and trees across a 50 ha stand of moist tropical forest, we contrasted community-wide patterns of liana mortality with relatively well-studied patterns of tree mortality to quantify patterns of liana death and identify contributing factors. Liana mortality rates were 172% higher than tree mortality rates, but species-level mortality rates of lianas were similar to trees with ‘fast’ life-history strategies and both growth forms exhibited similar spatial and size-dependent patterns. The mortality rates of liana saplings (<2.1 cm in diameter), which represent about 50% of liana individuals, decreased with increasing disturbance severity and remained consistently low during post-disturbance stand thinning. In contrast, larger liana individuals and trees of all sizes had elevated mortality rates in response to disturbance and their mortality rates decreased over time since disturbance. Within undisturbed forest patches, liana mortality rates increased with increasing soil fertility in a manner similar to trees. The distinct responses of liana saplings to disturbance appeared to distinguish liana mortality from that of trees, whereas similarities in their patterns of death suggest that there are common drivers of woody plant mortality.more » « lessFree, publicly-accessible full text available June 1, 2025
-
ABSTRACT Conspecific density dependence (CDD) in plant populations is widespread, most likely caused by local‐scale biotic interactions, and has potentially important implications for biodiversity, community composition, and ecosystem processes. However, progress in this important area of ecology has been hindered by differing viewpoints on CDD across subfields in ecology, lack of synthesis across CDD‐related frameworks, and misunderstandings about how empirical measurements of local CDD fit within the context of broader ecological theories on community assembly and diversity maintenance. Here, we propose a conceptual synthesis of local‐scale CDD and its causes, including species‐specific antagonistic and mutualistic interactions. First, we compare and clarify different uses of CDD and related concepts across subfields within ecology. We suggest the use of local stabilizing/destabilizing CDD to refer to the scenario where local conspecific density effects are more negative/positive than heterospecific effects. Second, we discuss different mechanisms for local stabilizing and destabilizing CDD, how those mechanisms are interrelated, and how they cut across several fields of study within ecology. Third, we place local stabilizing/destabilizing CDD within the context of broader ecological theories and discuss implications and challenges related to scaling up the effects of local CDD on populations, communities, and metacommunities. The ultimate goal of this synthesis is to provide a conceptual roadmap for researchers studying local CDD and its implications for population and community dynamics.more » « lessFree, publicly-accessible full text available September 1, 2025
-
Lianas Significantly Reduce Aboveground and Belowground Carbon Storage: A Virtual Removal ExperimentLianas are structural parasites of trees that cause a reduction in tree growth and an increase in tree mortality. Thereby, lianas negatively impact forest carbon storage as evidenced by liana removal experiments. In this proof-of-concept study, we calibrated the Ecosystem Demography model (ED2) using 3 years of observations of net aboveground biomass (AGB) changes in control and removal plots of a liana removal experiment on Gigante Peninsula, Panama. After calibration, the model could accurately reproduce the observations of net biomass changes, the discrepancies between treatments, as well as the observed components of those changes (mortality, productivity, and growth). Simulations revealed that the long-term total (i.e., above- and belowground) carbon storage was enhanced in liana removal plots (+1.2 kg C m –2 after 3 years, +1.8 kg C m –2 after 10 years, as compared to the control plots). This difference was driven by a sharp increase in biomass of early successional trees and the slow decomposition of liana woody tissues in the removal plots. Moreover, liana removal significantly reduced the simulated heterotrophic respiration (−24%), which resulted in an average increase in net ecosystem productivity (NEP) from 0.009 to 0.075 kg C m –2 yr –1 for 10 years after liana removal. Based on the ED2 model outputs, lianas reduced gross and net primary productivity of trees by 40% and 53%, respectively, mainly through competition for light. Finally, model simulations suggested a profound impact of the liana removal on the soil carbon dynamics: the simulated metabolic litter carbon pool was systematically larger in control plots (+51% on average) as a result of higher mortality rates and faster leaf and root turnover rates. By overcoming the challenge of including lianas and depicting their effect on forest ecosystems, the calibrated version of the liana plant functional type (PFT) as incorporated in ED2 can predict the impact of liana removal at large-scale and its potential effect on long-term ecosystem carbon storage.more » « less
-
Abstract The well‐established pattern of forest thinning during succession predicts an increase in mean tree biomass with decreasing tree density. The forest thinning pattern is commonly assumed to be driven solely by tree‐tree competition. The presence of non‐tree competitors could alter thinning trajectories, thus altering the rate of forest succession and carbon uptake. We used a large‐scale liana removal experiment over 7 years in a 60‐ to 70‐year‐old Panamanian forest to test the hypothesis that lianas reduce the rate of forest thinning during succession. We found that lianas slowed forest thinning by reducing tree growth, not by altering tree recruitment or mortality. Without lianas, trees grew and presumably competed more, ultimately reducing tree density while increasing mean tree biomass. Our findings challenge the assumption that forest thinning is driven solely by tree‐tree interactions; instead, they demonstrate that competition from other growth forms, such as lianas, slow forest thinning and ultimately delay forest succession.more » « less
-
Summary Lightning is an important agent of plant mortality and disturbance in forests. Lightning‐caused disturbance is highly variable in terms of its area of effect and disturbance severity (i.e. tree damage and death), but we do not know how this variation is influenced by forest structure and plant composition.We used a novel lightning detection system to quantify how lianas influenced the severity and spatial extent (i.e. area) of lightning disturbance using 78 lightning strikes in central Panama.The local density of lianas (measured as liana basal area) was positively associated with the number of trees killed and damaged by lightning, and patterns of plant damage indicated that this occurred because lianas facilitated more electrical connections from large to small trees. Liana presence, however, did not increase the area of the disturbance. Thus, lianas increased the severity of lightning disturbance by facilitating damage to additional trees without influencing the footprint of the disturbance.These findings indicate that lianas spread electricity to damage and kill understory trees that otherwise would survive a strike. As liana abundance increases in tropical forests, their negative effects on tree survival with respect to the severity of lightning‐related tree damage and death are likely to increase.more » « less
-
Abstract Global biodiversity is declining at rates faster than at any other point in human history. Experimental manipulations at small spatial scales have demonstrated that communities with fewer species consistently produce less biomass than higher diversity communities. Understanding the consequences of the global extinction crisis for ecosystem functioning requires understanding how local experimental results are likely to change with increasing spatial and temporal scales and from experiments to naturally assembled systems.Scaling across time and space in a changing world requires baseline predictions. Here, we provide a graphical null model for area scaling of biodiversity–ecosystem functioning relationships using observed macroecological patterns: the species–area curve and the biomass–area curve. We use species–area and biomass–area curves to predict how species richness–biomass relationships are likely to change with increasing sampling extent. We then validate these predictions with data from two naturally assembled ecosystems: a Minnesota savanna and a Panamanian tropical dry forest.Our graphical null model predicts that biodiversity–ecosystem functioning relationships are scale‐dependent. However, we note two important caveats. First, our results indicate an apparent contradiction between predictions based on measurements in biodiversity–ecosystem functioning experiments and from scaling theory. When ecosystem functioning is measured as per unit area (e.g. biomass per m2), as is common in biodiversity–ecosystem functioning experiments, the slope of the biodiversity ecosystem functioning relationship should decrease with increasing scale. Alternatively, when ecosystem functioning is not measured per unit area (e.g. summed total biomass), as is common in scaling studies, the slope of the biodiversity–ecosystem functioning relationship should increase with increasing spatial scale. Second, the underlying macroecological patterns of biodiversity experiments are predictably different from some naturally assembled systems. These differences between the underlying patterns of experiments and naturally assembled systems may enable us to better understand when patterns from biodiversity–ecosystem functioning experiments will be valid in naturally assembled systems.Synthesis. This paper provides a simple graphical null model that can be extended to any relationship between biodiversity and any ecosystem functioning across space or time. Furthermore, these predictions provide crucial insights into how and when we may be able to extend results from small‐scale biodiversity experiments to naturally assembled regional and global ecosystems where biodiversity is changing.more » « less