Abstract Plant–soil feedback (PSF) plays a central role in determining plant community dynamics, yet our understanding of how different combinations of plants and microbes influence PSF remains limited. Plants of different mycorrhizal types often exhibit contrasting PSF outcomes, influencing plant recruitment and spatial structure. Generalizing across plant species based on mycorrhizal type creates the potential to examine broader effects on ecological communities.We review mechanisms contributing to different PSF outcomes between arbuscular mycorrhizal and ectomycorrhizal trees. We focus on how plant and fungal traits that differ between mycorrhizal types interact with pathogenic and saprotrophic microorganisms and nutrient and carbon cycling.Synthesis.Building on this framework, we propose several new research directions. First, mycorrhizal‐induced changes in soils can operate beyond the conspecific level, spilling over from abundant plant species onto less abundant ones. This community‐level ‘mycorrhizal spillover’ is hypothesized to affect PSF in ways that are additive and interactive with conspecific density dependence. Second, we describe how mycorrhizal effects on PSF could structure the way plant communities respond to global change. Third, we discuss how they may influence plant evolution by altering the balance of selection pressures on traits and genes related to pathogen defence and mutualism formation.
more »
« less
This content will become publicly available on September 1, 2025
Consequences of Local Conspecific Density Effects for Plant Diversity and Community Dynamics
ABSTRACT Conspecific density dependence (CDD) in plant populations is widespread, most likely caused by local‐scale biotic interactions, and has potentially important implications for biodiversity, community composition, and ecosystem processes. However, progress in this important area of ecology has been hindered by differing viewpoints on CDD across subfields in ecology, lack of synthesis across CDD‐related frameworks, and misunderstandings about how empirical measurements of local CDD fit within the context of broader ecological theories on community assembly and diversity maintenance. Here, we propose a conceptual synthesis of local‐scale CDD and its causes, including species‐specific antagonistic and mutualistic interactions. First, we compare and clarify different uses of CDD and related concepts across subfields within ecology. We suggest the use of local stabilizing/destabilizing CDD to refer to the scenario where local conspecific density effects are more negative/positive than heterospecific effects. Second, we discuss different mechanisms for local stabilizing and destabilizing CDD, how those mechanisms are interrelated, and how they cut across several fields of study within ecology. Third, we place local stabilizing/destabilizing CDD within the context of broader ecological theories and discuss implications and challenges related to scaling up the effects of local CDD on populations, communities, and metacommunities. The ultimate goal of this synthesis is to provide a conceptual roadmap for researchers studying local CDD and its implications for population and community dynamics.
more »
« less
- PAR ID:
- 10560332
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Ecology Letters
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 27
- Issue:
- 9
- ISSN:
- 1461-023X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synopsis Understanding how the structure of biological systems impacts their resilience (broadly defined) is a recurring question across multiple levels of biological organization. In ecology, considerable effort has been devoted to understanding how the structure of interactions between species in ecological networks is linked to different broad resilience outcomes, especially local stability. Still, nearly all of that work has focused on interaction structure in presence-absence terms and has not investigated quantitative structure, i.e., the arrangement of interaction strengths in ecological networks. We investigated how the interplay between binary and quantitative structure impacts stability in mutualistic interaction networks (those in which species interactions are mutually beneficial), using community matrix approaches. We additionally examined the effects of network complexity and within-guild competition for context. In terms of structure, we focused on understanding the stability impacts of nestedness, a structure in which more-specialized species interact with smaller subsets of the same species that more-generalized species interact with. Most mutualistic networks in nature display binary nestedness, which is puzzling because both binary and quantitative nestedness are known to be destabilizing on their own. We found that quantitative network structure has important consequences for local stability. In more-complex networks, binary-nested structures were the most stable configurations, depending on the quantitative structures, but which quantitative structure was stabilizing depended on network complexity and competitive context. As complexity increases and in the absence of within-guild competition, the most stable configurations have a nested binary structure with a complementary (i.e., anti-nested) quantitative structure. In the presence of within-guild competition, however, the most stable networks are those with a nested binary structure and a nested quantitative structure. In other words, the impact of interaction overlap on community persistence is dependent on the competitive context. These results help to explain the prevalence of binary-nested structures in nature and underscore the need for future empirical work on quantitative structure.more » « less
-
Abstract A major goal of community ecology is understanding the processes responsible for generating biodiversity patterns along spatial and environmental gradients. In stream ecosystems, system‐specific conceptual frameworks have dominated research describing biodiversity change along longitudinal gradients of river networks. However, support for these conceptual frameworks has been mixed, mainly applicable to specific stream ecosystems and biomes, and these frameworks have placed less emphasis on general mechanisms driving biodiversity patterns. Rethinking biodiversity patterns and processes in stream ecosystems with a focus on the overarching mechanisms common across ecosystems will provide a more holistic understanding of why biodiversity patterns vary along river networks. In this study, we apply the theory of ecological communities (TEC) conceptual framework to stream ecosystems to focus explicitly on the core ecological processes structuring communities: dispersal, speciation, niche selection, and ecological drift. Using a unique case study from high‐elevation networks of connected lakes and streams, we sampled stream invertebrate communities in the Sierra Nevada, California, USA to test established stream ecology frameworks and compared them with the TEC framework. Local diversity increased and β‐diversity decreased moving downstream from the headwaters, consistent with the river continuum concept and the small but mighty framework of mountain stream biodiversity. Local diversity was also structured by distance below upstream lakes, where diversity increased with distance below upstream lakes, in support of the serial discontinuity concept. Despite some support for the biodiversity patterns predicted from the stream ecology frameworks, no single framework was fully supported, suggesting “context dependence.” By framing our results under the TEC, we found that species diversity was structured by niche selection, where local diversity was highest in environmentally favorable sites. Local diversity was also highest in sites with small community sizes, countering the predicted effects of ecological drift. Moreover, higher β‐diversity in the headwaters was influenced by dispersal and niche selection, where environmentally harsh and spatially isolated sites exhibit higher community variation. Taken together our results suggest that combining system‐specific ecological frameworks with the TEC provides a powerful approach for inferring the mechanisms driving biodiversity patterns and provides a path toward generalization of biodiversity research across ecosystems.more » « less
-
Abstract Ecological forecasting provides a powerful set of methods for predicting short‐ and long‐term change in living systems. Forecasts are now widely produced, enabling proactive management for many applied ecological problems. However, despite numerous calls for an increased emphasis on prediction in ecology, the potential for forecasting to accelerate ecological theory development remains underrealized.Here, we provide a conceptual framework describing how ecological forecasts can energize and advance ecological theory. We emphasize the many opportunities for future progress in this area through increased forecast development, comparison and synthesis.Our framework describes how a forecasting approach can shed new light on existing ecological theories while also allowing researchers to address novel questions. Through rigorous and repeated testing of hypotheses, forecasting can help to refine theories and understand their generality across systems. Meanwhile, synthesizing across forecasts allows for the development of novel theory about the relative predictability of ecological variables across forecast horizons and scales.We envision a future where forecasting is integrated as part of the toolset used in fundamental ecology. By outlining the relevance of forecasting methods to ecological theory, we aim to decrease barriers to entry and broaden the community of researchers using forecasting for fundamental ecological insight.more » « less
-
The finding that adaptive evolution can often be substantial enough to alter ecological dynamics challenges traditional views of community ecology that ignore evolution. Here, we propose that evolution might commonly alter both local and regional processes of community assembly. We show how adaptation can substantially affect community assembly and that these effects depend on regional (metacommunity) factors, including environmental heterogeneity and its spatial structure. In particular, early colonists can often arrive from a nearby community, adapt to local conditions, and subsequently alter the establishment or abundance of late-arriving species, often producing an evolutionary priority effect. We also discuss how interaction type and relative rates of colonization, evolution, and community interactions determine divergent community outcomes. We describe new conceptual approaches that provide insights into these dynamics and statistical methods that can better evaluate their importance. Overall, we demonstrate that accounting for adaptation during community assembly opens up novel ways for making progress on fundamental questions in community ecology.more » « less