Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The solid solution LnSbxTe2−x−δ (Ln = lanthanide) is a family of square-net topological semimetals that exhibit tunable charge density wave (CDW) distortions and band filling dependent on x, offering broad opportunities to examine the interplay of topological electronic states, CDW, and magnetism. While several Ln series have been characterized, gaps in the literature remain, inviting a systematic survey of the remaining composition space that is synthetically accessible. We present our efforts to synthesize LnSbxTe2−x−δ across the remaining lanthanides via chemical vapor transport. Compiling our results with the reported literature, we generate a stability phase diagram across the ranges of Ln and x. We find a stability boundary for intermediate x beyond Tb, while x = 1 and x = 0 can be isolated up to Ho and Dy, respectively. SEM and XRD analyses of unsuccessful reactions indicated the formation of several stable binary phases. The presence of structurally related LnTe3 in samples suggests that stability is limited by the size of Ln, due to increasing compressive strain along the layer stacking axis with decreasing size. Finally, we demonstrate that late Ln can be stabilized in LnSbxTe2−x−δ via substitution into larger Ln members, synthesizing La1−yHoySbxTe2−x−δ as a proof of concept.more » « lessFree, publicly-accessible full text available December 4, 2025
-
Materials discovery lays the foundation for many technological advancements. The prediction and discovery of new materials are not simple tasks. Here, we outline some basic principles of solid-state chemistry, which might help to advance both, and discuss pitfalls and challenges in materials discovery. Using the recent work of Szymanski et al. [Nature 624, 86 (2023)], which reported the autonomous discovery of 43 novel materials, as an example, we discuss problems that can arise in unsupervised materials discovery and hope that by addressing these, autonomous materials discovery can be brought closer to reality. We discuss all 43 synthetic products and point out four common shortfalls in the analysis. These errors unfortunately lead to the conclusion that no new materials have been discovered in that work. We conclude that there are two important points of improvement that require future work from the community, as follows. (i) Automated Rietveld analysis of powder x-ray diffraction data is not yet reliable. Future improvement of such, and the development of a reliable artificial-intelligence-based tool for Rietveld fitting, would be very helpful, not only for autonomous materials discovery but also for the community in general. (ii) We find that disorder in materials is often neglected in predictions. The predicted compounds investigated herein have all their elemental components located on distinct crystallographic positions but in reality, elements can share crystallographic sites, resulting in higher-symmetry space groups and—very often—known alloys or solid solutions. This error might be related to the difficulty of modeling disorder in a computationally economical way and needs to be addressed both by computational and experimental material scientists. We find that two thirds of the claimed successful materials in Szymanski et al. are likely to be known compositionally disordered versions of the predicted ordered compounds. We highlight important issues in materials discovery, computational chemistry, and autonomous interpretation of x-ray diffraction. We discuss concepts of materials discovery from an experimentalist point of view, which we hope will be helpful for the community to further advance this important new aspect of our field.more » « lessFree, publicly-accessible full text available March 1, 2025
-
Free, publicly-accessible full text available July 1, 2025
-
Optical spectroscopy of quantum materials at ultralow temperatures is rarely explored, yet it may provide critical characterizations of quantum phases not possible using other approaches. We describe the development of a novel experimental platform that enables optical spectroscopic studies, together with standard electronic transport, of materials at millikelvin temperatures inside a dilution refrigerator. The instrument is capable of measuring both bulk crystals and micrometer-sized two-dimensional van der Waals materials and devices. We demonstrate its performance by implementing photocurrent-based Fourier transform infrared spectroscopy on a monolayer WTe2 device and a multilayer 1T-TaS2 crystal, with a spectral range available from the near-infrared to the terahertz regime and in magnetic fields up to 5 T. In the far-infrared regime, we achieve spectroscopic measurements at a base temperature as low as ∼43 mK and a sample electron temperature of ∼450 mK. Possible experiments and potential future upgrades of this versatile instrumental platform are envisioned.
-
Colossal negative magnetoresistance is a well-known phenomenon, notably observed in hole-doped ferromagnetic manganites. It remains a major research topic due to its potential in technological applications. In contrast, topological semimetals show large but positive magnetoresistance, originated from the high-mobility charge carriers. Here, we show that in the highly electron-doped region, the Dirac semimetal CeSbTe demonstrates similar properties as the manganites. CeSb0.11Te1.90hosts multiple charge density wave modulation vectors and has a complex magnetic phase diagram. We confirm that this compound is an antiferromagnetic Dirac semimetal. Despite having a metallic Fermi surface, the electronic transport properties are semiconductor-like and deviate from known theoretical models. An external magnetic field induces a semiconductor metal–like transition, which results in a colossal negative magnetoresistance. Moreover, signatures of the coupling between the charge density wave and a spin modulation are observed in resistivity. This spin modulation also produces a giant anomalous Hall response.