skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 18, 2025

Title: NaW 2 S 4 and Rb x WS 2 : Alternative Sources for 2M-WS 2 and 1T′-WS 2 Monolayers
Award ID(s):
2011750
PAR ID:
10585776
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Inorganic Chemistry
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
63
Issue:
46
ISSN:
0020-1669
Page Range / eLocation ID:
21954 to 21962
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We fabricated a van der Waals heterostructure of WS 2 –ReSe 2 and studied its charge-transfer properties. Monolayers of WS 2 and ReSe 2 were obtained by mechanical exfoliation and chemical vapor deposition, respectively. The heterostructure sample was fabricated by transferring the WS 2 monolayer on top of ReSe 2 by a dry transfer process. Photoluminescence quenching was observed in the heterostructure, indicating efficient interlayer charge transfer. Transient absorption measurements show that holes can efficiently transfer from WS 2 to ReSe 2 on an ultrafast timescale. Meanwhile, electron transfer from ReSe 2 to WS 2 was also observed. The charge-transfer properties show that monolayers of ReSe 2 and WS 2 form a type-II band alignment, instead of type-I as predicted by theory. The type-II alignment is further confirmed by the observation of extended photocarrier lifetimes in the heterostructure. These results provide useful information for developing van der Waals heterostructure involving ReSe 2 for novel electronic and optoelectronic applications and introduce ReSe 2 to the family of two-dimensional materials to construct van der Waals heterostructures. 
    more » « less
  2. Abstract Transition metal dichalcogenide (TMD) heterostructures are promising for a variety of applications in photovoltaics and photosensing. Successfully exploiting these heterostructures will require an understanding of their layer-dependent electronic structures. However, there is no experimental data demonstrating the layer-number dependence of photovoltaic effects (PVEs) in vertical TMD heterojunctions. Here, by combining scanning electrochemical cell microscopy (SECCM) with optical probes, we report the first layer-dependence of photocurrents in WSe 2 /WS 2 vertical heterostructures as well as in pristine WS 2 and WSe 2 layers. For WS 2 , we find that photocurrents increase with increasing layer thickness, whereas for WSe 2 the layer dependence is more complex and depends on both the layer number and applied bias ( V b ). We further find that photocurrents in the WSe 2 /WS 2 heterostructures exhibit anomalous layer and material-type dependent behaviors. Our results advance the understanding of photoresponse in atomically thin WSe 2 /WS 2 heterostructures and pave the way to novel nanoelectronic and optoelectronic devices. 
    more » « less