skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Schuck, P. James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 20, 2025
  2. Abstract

    Strong light-matter interactions in localized nano-emitters placed near metallic mirrors have been widely reported via spectroscopic studies in the optical far-field. Here, we report a near-field nano-spectroscopic study of localized nanoscale emitters on a flat Au substrate. Using quasi 2-dimensional CdSe/CdxZn1-xS nanoplatelets, we observe directional propagation on the Au substrate of surface plasmon polaritons launched from the excitons of the nanoplatelets as wave-like fringe patterns in the near-field photoluminescence maps. These fringe patterns were confirmed via extensive electromagnetic wave simulations to be standing-waves formed between the tip and the edge-up assembled nano-emitters on the substrate plane. We further report that both light confinement and in-plane emission can be engineered by tuning the surrounding dielectric environment of the nanoplatelets. Our results lead to renewed understanding of in-plane, near-field electromagnetic signal transduction from the localized nano-emitters with profound implications in nano and quantum photonics as well as resonant optoelectronics.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Upconverting nanoparticles (UCNPs) compose a class of luminescent materials that utilize the unique wavelength-converting properties of lanthanide (Ln) ions for light-harvesting applications, photonics technologies, and biological imaging and sensing experiments. Recent advances in UCNP design have shed light on the properties of local color centers, both intrinsic and controllably induced, within these materials and their potential influence on UCNP photophysics. In this review, we describe fundamental studies of color centers in Ln-based materials, including research into their origins and their roles in observed photodarkening and photobrightening mechanisms. We place particular focus on the new functionalities that are enabled by harnessing the properties of color centers within Ln-doped nanocrystals, illustrated through applications in afterglow-based bioimaging, X-ray detection, all-inorganic nanocrystal photoswitching, and fully rewritable optical patterning and memory.

     
    more » « less
  4. Abstract

    Localized states in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the subject of intense study, driven by potential applications in quantum information science. Despite the rapidly growing knowledge surrounding these emitters, their microscopic nature is still not fully understood, limiting their production and application. Motivated by this challenge, and by recent theoretical and experimental evidence showing that nanowrinkles generate strain-localized room-temperature emitters, we demonstrate a method to intentionally induce wrinkles with collections of stressors, showing that long-range wrinkle direction and position are controllable with patterned array design. Nano-photoluminescence (nano-PL) imaging combined with detailed strain modeling based on measured wrinkle topography establishes a correlation between wrinkle properties, particularly shear strain, and localized exciton emission. Beyond the array-induced wrinkles, nano-PL spatial maps further reveal that the strain environment around individual stressors is heterogeneous due to the presence of fine wrinkles that are less deterministic. At cryogenic temperatures, antibunched emission is observed, confirming that the nanocone-induced strain is sufficiently large for the formation of quantum emitters. At 300 K, detailed nanoscale hyperspectral images uncover a wide range of low-energy emission peaks originating from the fine wrinkles, and show that the states can be tightly confined to regions <10 nm, even in ambient conditions. These results establish a promising potential route towards realizing room temperature quantum emission in 2D TMDC systems.

     
    more » « less
  5. Abstract

    Excitons, bound electron–hole pairs, in two-dimensional hybrid organic inorganic perovskites (2D HOIPs) are capable of forming hybrid light-matter states known as exciton-polaritons (E–Ps) when the excitonic medium is confined in an optical cavity. In the case of 2D HOIPs, they can self-hybridize into E–Ps at specific thicknesses of the HOIP crystals that form a resonant optical cavity with the excitons. However, the fundamental properties of these self-hybridized E–Ps in 2D HOIPs, including their role in ultrafast energy and/or charge transfer at interfaces, remain unclear. Here, we demonstrate that >0.5 µm thick 2D HOIP crystals on Au substrates are capable of supporting multiple-orders of self-hybridized E–P modes. These E–Ps have high Q factors (>100) and modulate the optical dispersion for the crystal to enhance sub-gap absorption and emission. Through varying excitation energy and ultrafast measurements, we also confirm energy transfer from higher energy E–Ps to lower energy E–Ps. Finally, we also demonstrate that E–Ps are capable of charge transport and transfer at interfaces. Our findings provide new insights into charge and energy transfer in E–Ps opening new opportunities towards their manipulation for polaritonic devices.

     
    more » « less
  6. Nodal-line metals allow hyperbolic infrared waveguiding through the bulk with band structure–engineered loss reduction. 
    more » « less