- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Schueth, Alex (2)
-
Coffer, Brice E. (1)
-
Dahl, Johannes M. (1)
-
Dahl, Johannes M.L. (1)
-
Fischer, Jannick (1)
-
Houser, Jana Lesak (1)
-
Markowski, Paul M. (1)
-
Parker, Matthew D. (1)
-
Weiss, Christopher (1)
-
Weiss, Christopher C. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Over the last decade, supercell simulations and observations with ever increasing resolution have provided new insights into the vortex-scale processes of tornado formation. This article incorporates these and other recent findings into the existing three-step model by adding an additional fourth stage. The goal is to provide an updated and clear picture of the physical processes occurring during tornadogenesis. Specifically, we emphasize the importance of the low-level wind shear and mesocyclone for tornado potential, the organization and interaction of relatively small-scale pre-tornadic vertical vorticity maxima, and the transition to a tornado-characteristic flow. Based on these insights, guiding research questions are formulated for the decade ahead.more » « less
-
Schueth, Alex; Weiss, Christopher; Dahl, Johannes M.L. (, Monthly Weather Review)null (Ed.)Abstract The forward-flank convergence boundary (FFCB) in supercells has been well documented in many observational and modeling studies. It is theorized that the FFCB is a focal point fore baroclinic generation of vorticity. This vorticity is generally horizontal and streamwise in nature, which can then be tilted and converted to mid-level (3-6 km AGL) vertical vorticity. Previous modeling studies of supercells often show horizontal streamwise vorticity present behind the FFCB, with higher resolution simulations resolving larger magnitudes of horizontal vorticity. Recently, studies have shown a particularly strong realization of this vorticity called the streamwise vorticity current (SVC). In this study, a tornadic supercell is simulated with the Bryan Cloud Model at 125-m horizontal grid spacing, and a coherent SVC is shown to be present. Simulated range-height indicator (RHI) data show the strongest horizontal vorticity is located on the periphery of a steady-state Kelvin-Helmholtz billow in the FFCB head. Additionally, similar structure is found in two separate observed cases with the Texas Tech University Ka-band (TTUKa) mobile radar RHIs. Analyzing vorticity budgets for parcels in the vicinity of the FFCB head in the simulation, stretching of vorticity is the primary contributor to the strong streamwise vorticity, while baroclinic generation of vorticity plays a smaller role.more » « less
An official website of the United States government
