Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Blasco, Julian (Ed.)Albeit remote, Arctic benthic ecosystems are impacted by fisheries and climate change. Yet, anthropogenic impacts are poorly understood, as benthic ecosystems and their drivers have not been mapped over large areas. We disentangle spatial patterns and drivers of benthic epifauna (animals living on the seabed surface) in West Greenland, by integrating an extensive beam-trawl dataset (326 stations, 59–75°N, 30–1400 m water depth) with environmental data. We find high variability at different spatial scales: (1) Epifauna biomass decreases with increasing latitude, sea-ice cover and water depth, related to food limitation. (2) In Greenland, the Labrador Sea in the south shows higher epifauna taxon richness compared to Baffin Bay in the north. Τhe interjacent Davis Strait forms a permeable boundary for epifauna dispersal and a mixing zone for Arctic and Atlantic taxa, featuring regional biodiversity hotspots. (3) The Labrador Sea and Davis Strait provide suitable habitats for filter-feeding epifauna communities of high biomass e.g., sponges on the steep continental slope and sea cucumbers on shallow banks. In Baffin Bay, the deeper continental shelf, more gentle continental slope, lower current speed and lower phytoplankton biomass promote low-biomass epifauna communities, predominated by sea stars, anemones, or shrimp. (4) Bottom trawling reduces epifauna biomass and taxon richness throughout the study area, where sessile filter feeders are particularly vulnerable. Climate change with diminished sea ice cover in Baffin Bay may amplify food availability to epifauna, thereby increasing their biomass. While more species might expand northward due to the general permeability of Davis Strait, an extensive colonization of Baffin Bay by high-biomass filter-feeding epifauna remains unlikely, given the lack of suitable habitats. The pronounced vulnerability of diverse and biomass-rich epifauna communities to bottom trawling emphasizes the necessity for an informed and sustainable ecosystem-based management in the face of rapid climate changemore » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Abstract. The melt of snow and sea ice during the Arctic summer is a significant source of relatively fresh meltwater in the central Arctic. The fate of this freshwater – whether in surface melt ponds, or thin layers underneath the ice and in leads – impacts atmosphere-ice-ocean interactions and their subsequent coupled evolution. Here, we combine analyses of datasets from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition (June–July, 2020) to understand the key drivers of the sea ice freshwater budget in the Central Arctic and the fate of this water over time. Freshwater budget analyses suggest that a relatively high fraction (58 %) is derived from surface melt. Additionally, the contribution from stored precipitation (snowmelt) significantly outweighs by five times the input from in situ summer precipitation (rain). The magnitude and rate of local meltwater production are remarkably similar to that observed on the prior Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. A relatively small fraction (10 %) of freshwater from melt remains in ponds, which is higher on more deformed second-year ice compared to first-year ice later in the summer. Most meltwater drains via lateral and vertical drainage channels, with vertical drainage enabling storage of freshwater internally in the ice by freshening of brine channels. In the upper ocean, freshwater can accumulate in transient meltwater layers on the order of 10 cm to 1 m thick in leads and under the ice. The presence of such layers substantially impacts the coupled system by reducing bottom melt and allowing false bottom growth, reducing heat, nutrient and gas exchange, and influencing ecosystem productivity. Regardless, the majority fraction of freshwater from melt is inferred to be ultimately incorporated into upper ocean (75 %) or stored internally in the ice (14 %). Comparison of key source and sink terms with estimates from the CESM2 climate model suggest that simulated freshwater storage in melt ponds is dramatically underestimated. This suggests pond drainage terms should be investigated as a likely explanation.more » « less
- 
            The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) produced a wealth of observational data along the drift of the R/V Polarstern in the Arctic Ocean from October 2019 to September 2020. These data can further process-level understanding and improvements in models. However, the observational records contain temporal gaps and are provided in different formats. One goal of the MOSAiC Single Column Model Working Group (MSCMWG: https://mosaic-expedition.org/science/cross-cutting_groups/) is to provide consistently-formatted, gap-filled, merged datasets representing the conditions at the MOSAiC Central Observatory (the intensively studied region within a few km of R/V Polarstern) that are suitable for driving models on this spatial domain (e.g., single column models, large eddy simulations, etc). The MSCMWG is an open group, please contact the dataset creators if you would like to contribute to future versions of these merged datasets (including new variables). This dataset contains version 1 of these merged datasets, and comprises the variables necessary to force a single column ice model (e.g., Icepack: https://zenodo.org/doi/10.5281/zenodo.1213462). The atmospheric variables are primarily derived from Met City (~66 percent (%) of record, https://doi.org/10.18739/A2PV6B83F), with temporal gaps filled by bias and advection corrected data from Atmospheric Surface Flux Stations ( https://doi.org/10.18739/A2XD0R00S, https://doi.org/10.18739/A25X25F0P, https://doi.org/10.18739/A2FF3M18K). Some residual gaps in shortwave radiation were filled with ARM ship-board radiometer data. Three different options for snowfall precipitation rate (prsn) are provided, based on in-situ observations that precipitation greatly exceeded accumulation on level ice, and accumulation rates varied on different ice types. MOSAiC_kazr_snow_MDF_20191005_20201001.nc uses 'snowfall_rate1' derived from the vertically-pointing, ka-band radar on the vessel (https://doi.org/10.5439/1853942). MOSAiC_Raphael_snow_fyi_MDF_20191005_20201001.nc and MOSAiC_Raphael_snow_syi_MDF_20191005_20201001.nc use snow accumulation measurements from manual mass balance sites (https://doi.org/10.18739/A2NK36626) to derived a pseudo-precipitation. MOSAiC_Raphael_snow_fyi_MDF_20191005_20201001.nc is based on the First Year Ice (fyi) sites. MOSAiC_Raphael_snow_syi_MDF_20191005_20201001.nc is based on the Second Year Ice (syi) sites. The other atmospheric variables for these files are identical. Oceanic variables are in MOSAiC_ocn_MDF_20191006_20200919.nc and are derived from https://doi.org/10.18739/A21J9790B. The data are netCDF files formatted according to the Merged Data File format (https://doi.org/10.5194/egusphere-2023-2413, https://gitlab.com/mdf-makers/mdf-toolkit). The code 'recipes' that were used to produce these data are available at: https://doi.org/10.5281/zenodo.10819497. If you use these datasets, please also cite the appropriate publications: Meteorological variables (excluding precipitation): Cox et al., 2023 (https://doi.org/10.1038/s41597-023-02415-5) Oceanographic variables: Schulz et al., 2023 (https://doi.org/10.31223/X5TT2W) KAZR-derived precipitation: Matrosov et al., 2022 (https://doi.org/10.1525/elementa.2021.00101) Accumulation-derived pseudo-precipitation: Raphael et al., in review. The following are known issues that will be addressed in future dataset releases: 1. Residual gaps occupy approximately 20% of the data record (see addendum) 2. Some transitions to shiprad downwelling shortwave are unreasonable abrupt 3. MDF format does not currently include a field for point-by-point data source Addendum: For atmospheric variables, below indicates the percentage sourced from each dataset (and the amount missing a.k.a NaN) Air Temperature metcity 0.661943 NaN 0.193333 asfs30 0.134910 asfs40 0.008607 asfs50 0.001207 Specific Humidity metcity 0.658890 NaN 0.196298 asfs40 0.008695 Wind Velocity metcity 0.666334 NaN 0.255003 asfs30 0.068828 asfs40 0.008630 asfs50 0.001205 Downwelling Longwave metcity 0.549417 asfs30 0.241502 NaN 0.209081 Downwelling Shortwave metcity 0.674166 NaN 0.158814 asfs30 0.140794 shipradS1 0.026226 Note that the 21 day gap from the end of Central Observatory 2 to the start of Central Observatory 3 occupies 5.8% of the record.more » « less
- 
            As a part of the Scientific Committee on Oceanographic Research (SCOR) Working Group #160 “Analyzing ocean turbulence observations to quantify mixing” (ATOMIX), we have developed recommendations on best practices for estimating the rate of dissipation of kinetic energy,ε, from measurements of turbulence shear using shear probes. The recommendations provided here are platform-independent and cover the conceivable range of dissipation rates in the ocean, seas, and other natural waters. They are applicable to commonly deployed platforms that include vertical profilers, fixed and moored instruments, towed profilers, submarines, self-propelled ocean gliders, and other autonomous underwater vehicles. The procedure for preparing the shear data for spectral estimation is discussed in detail, as are the quality control metrics that should accompany each estimate ofε. The methods are illustrated using a high-quality ‘benchmark’ dataset, while potential pitfalls are demonstrated with a second dataset containing common faults.more » « less
- 
            Wysession, Michael; Grimm, Nancy; Peterson, Bill; Hofmann, Eileen; Zhang, Renyi; Illangasekare, Tissa (Ed.)Abstract In 2023, the first Polar Postdoc Leadership Workshop convened to discuss present and future polar science issues and to develop leadership skills. The workshop discussions fostered a collective commitment to inclusive leadership within the polar science community among all participants. Here, we outline challenges encountered by underrepresented groups in polar sciences, while also noting that progress has been made to improve inclusivity in the field. Further, we highlight the inclusive leadership principles identified by workshop participants to bring to the polar community as we transition into leadership roles. Finally, insights and practical knowledge we gained from the workshop are shared, aiming to inform the community of our commitment to inclusive leadership and encourage the polar community to join us in pursuing action toward our shared vision for a more welcoming polar science future.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC, 2019–2020), a year-long drift with the Arctic sea ice, has provided the scientific community with an unprecedented, multidisciplinary dataset from the Eurasian Arctic Ocean, covering high atmosphere to deep ocean across all seasons. However, the heterogeneity of data and the superposition of spatial and temporal variability, intrinsic to a drift campaign, complicate the interpretation of observations. In this study, we have compiled a quality-controlled physical hydrographic dataset with best spatio-temporal coverage and derived core parameters, including the mixed layer depth, heat fluxes over key layers, and friction velocity. We provide a comprehensive and accessible overview of the ocean conditions encountered along the MOSAiC drift, discuss their interdisciplinary implications, and compare common ocean climatologies to these new data. Our results indicate that, for the most part, ocean variability was dominated by regional rather than seasonal signals, carrying potentially strong implications for ocean biogeochemistry, ecology, sea ice, and even atmospheric conditions. Near-surface ocean properties were strongly influenced by the relative position of sampling, within or outside the river-water influenced Transpolar Drift, and seasonal warming and meltwater input. Ventilation down to the Atlantic Water layer in the Nansen Basin allowed for a stronger connectivity between subsurface heat and the sea ice and surface ocean via elevated upward heat fluxes. The Yermak Plateau and Fram Strait regions were characterized by heterogeneous water mass distributions, energetic ocean currents, and stronger lateral gradients in surface water properties in frontal regions. Together with the presented results and core parameters, we offer context for interdisciplinary research, fostering an improved understanding of the complex, coupled Arctic System.more » « less
- 
            The rapid melt of snow and sea ice during the Arctic summer provides a significant source of low-salinity meltwater to the surface ocean on the local scale. The accumulation of this meltwater on, under, and around sea ice floes can result in relatively thin meltwater layers in the upper ocean. Due to the small-scale nature of these upper-ocean features, typically on the order of 1 m thick or less, they are rarely detected by standard methods, but are nevertheless pervasive and critically important in Arctic summer. Observations during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in summer 2020 focused on the evolution of such layers and made significant advancements in understanding their role in the coupled Arctic system. Here we provide a review of thin meltwater layers in the Arctic, with emphasis on the new findings from MOSAiC. Both prior and recent observational datasets indicate an intermittent yet long-lasting (weeks to months) meltwater layer in the upper ocean on the order of 0.1 m to 1.0 m in thickness, with a large spatial range. The presence of meltwater layers impacts the physical system by reducing bottom ice melt and allowing new ice formation via false bottom growth. Collectively, the meltwater layer and false bottoms reduce atmosphere-ocean exchanges of momentum, energy, and material. The impacts on the coupled Arctic system are far-reaching, including acting as a barrier for nutrient and gas exchange and impacting ecosystem diversity and productivity.more » « less
- 
            Arctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present along-drift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
