skip to main content

Search for: All records

Creators/Authors contains: "Schwab, Josiah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Helium star–carbon-oxygen white dwarf (CO WD) binaries are potential single-degenerate progenitor systems of thermonuclear supernovae. Revisiting a set of binary evolution calculations using the stellar evolution code MESA , we refine our previous predictions about which systems can lead to a thermonuclear supernova and then characterize the properties of the helium star donor at the time of explosion. We convert these model properties to near-UV/optical magnitudes assuming a blackbody spectrum and support this approach using a matched stellar atmosphere model. These models will be valuable to compare with pre-explosion imaging for future supernovae, though we emphasize the observational difficulty of detecting extremely blue companions. The pre-explosion source detected in association with SN 2012Z has been interpreted as a helium star binary containing an initially ultra-massive WD in a multiday orbit. However, extending our binary models to initial CO WD masses of up to 1.2 M ⊙ , we find that these systems undergo off-center carbon ignitions and thus are not expected to produce thermonuclear supernovae. This tension suggests that, if SN 2012Z is associated with a helium star–WD binary, then the pre-explosion optical light from the system must be significantly modified by the binary environment and/or the WD doesmore »not have a carbon-rich interior composition.« less
    Free, publicly-accessible full text available December 1, 2022
  2. Abstract

    Stellar evolution and numerical hydrodynamics simulations depend critically on access to fast, accurate, thermodynamically consistent equations of state. We present Skye, a new equation of state for fully ionized matter. Skye includes the effects of positrons, relativity, electron degeneracy, Coulomb interactions, nonlinear mixing effects, and quantum corrections. Skye determines the point of Coulomb crystallization in a self-consistent manner, accounting for mixing and composition effects automatically. A defining feature of this equation of state is that it uses analytic free energy terms and provides thermodynamic quantities using automatic differentiation machinery. Because of this, Skye is easily extended to include new effects by simply writing new terms in the free energy. We also introduce a novelthermodynamic extrapolationscheme for extending analytic fits to the free energy beyond the range of the fitting data while preserving desirable properties like positive entropy and sound speed. We demonstrate Skye in action in theMESAstellar evolution software instrument by computing white dwarf cooling curves.

  3. Abstract

    We explore changes in the adiabatic low-order g-mode pulsation periods of 0.526, 0.560, and 0.729Mcarbon–oxygen white dwarf models with helium-dominated envelopes due to the presence, absence, and enhancement of22Ne in the interior. The observed g-mode pulsation periods of such white dwarfs are typically given to 6−7 significant figures of precision. Usually white dwarf models without22Ne are fit to the observed periods and other properties. The rms residuals to the ≃150−400 s low-order g-mode periods are typically in the range ofσrms≲ 0.3 s, for a fit precision ofσrms/P≲ 0.3%. We find average relative period shifts of ΔP/P≃ ±0.5% for the low-order dipole and quadrupole g-mode pulsations within the observed effective temperature window, with the range of ΔP/Pdepending on the specific g-mode, abundance of22Ne, effective temperature, and the mass of the white dwarf model. This finding suggests a systematic offset may be present in the fitting process of specific white dwarfs when22Ne is absent. As part of the fitting processes involves adjusting the composition profiles of a white dwarf model, our study on the impact of22Ne can provide new inferences on the derived interior mass fraction profiles. We encourage routinely including22Ne mass fraction profiles, informed by stellar evolution models, to futuremore »generations of white dwarf model-fitting processes.

    « less
  4. Abstract The collapse of degenerate oxygen–neon cores (i.e., electron-capture supernovae or accretion-induced collapse) proceeds through a phase in which a deflagration wave (“flame”) forms at or near the center and propagates through the star. In models, the assumed speed of this flame influences whether this process leads to an explosion or to the formation of a neutron star. We calculate the laminar flame speeds in degenerate oxygen–neon mixtures with compositions motivated by detailed stellar evolution models. These mixtures include trace amounts of carbon and have a lower electron fraction than those considered in previous work. We find that trace carbon has little effect on the flame speeds, but that material with electron fraction has laminar flame speeds that are times faster than those at . We provide tabulated flame speeds and a corresponding fitting function so that the impact of this difference can be assessed via full star hydrodynamical simulations of the collapse process.
  5. ABSTRACT The progenitor system of the compact binary merger GW190425 had a total mass of $3.4^{+0.3}_{-0.1}$ M⊙ (90th-percentile confidence region) as measured from its gravitational wave signal. This mass is significantly different from the Milky Way (MW) population of binary neutron stars (BNSs) that are expected to merge in a Hubble time and from that of the first BNS merger, GW170817. Here, we explore the expected electromagnetic (EM) signatures of such a system. We make several astrophysically motivated assumptions to further constrain the parameters of GW190425. By simply assuming that both components were NSs, we reduce the possible component masses significantly, finding $m_{1}=1.85^{+0.27}_{-0.19}$ M⊙ and $m_{2}=1.47^{+0.16}_{-0.18}$ M⊙. However, if the GW190425 progenitor system was an NS–black hole (BH) merger, we find best-fitting parameters $m_{1}=2.19^{+0.21}_{-0.17}$ M⊙ and $m_{2}=1.26^{+0.10}_{-0.08}$ M⊙. For a well-motivated BNS system where the lighter NS has a mass similar to the mass of non-recycled NSs in MW BNS systems, we find $m_{1}=2.03^{+0.15}_{-0.14}$ M⊙ and m2 = 1.35 ± 0.09 M⊙, corresponding to only 7 per cent mass uncertainties. For all scenarios, we expect a prompt collapse of the resulting remnant to a BH. Examining detailed models with component masses similar to our best-fitting results, we find the EM counterpart to GW190425 is expected to be significantly redder and fainter thanmore »that of GW170817. We find that almost all reported search observations were too shallow to detect the expected counterpart to GW190425. If the LIGO–Virgo Collaboration promptly provides the chirp mass, the astronomical community can adapt their observations to improve the likelihood of detecting a counterpart for similarly ‘high-mass’ BNS systems.« less