skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Schwaha, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bryozoans are mostly sessile aquatic colonial invertebrates belonging to the clade Lophotrochozoa, which unites many protostome bilaterian phyla such as molluscs, annelids and brachiopods. While Hox and ParaHox genes have been extensively studied in various lophotrochozoan lineages, investigations on Hox and ParaHox gene complements in bryozoans are scarce. Herein, we present the most comprehensive survey of Hox and ParaHox gene complements in bryozoans using four genomes and 35 transcriptomes representing all bryozoan clades: Cheilostomata, Ctenostomata, Cyclostomata and Phylactolaemata. Using similarity searches, phylogenetic analyses and detailed manual curation, we have identified five Hox genes in bryozoans (pb, Dfd, Lox5, Lox4 and Post2) and one ParaHox gene (Cdx). Interestingly, we observed lineage-specific duplication of certain Hox and ParaHox genes (Dfd, Lox5 and Cdx) in some bryozoan lineages. The bryozoan Hox cluster does not retain the ancestral lophotrochozoan condition but appears relatively simple (includes only five genes) and broken into two genomic regions, characterized by the loss and duplication of serval genes. Importantly, bryozoans share the lack of two Hox genes (Post1 and Scr) with their proposed sister-taxon, Phoronida, which suggests that those genes were missing in the most common ancestor of bryozoans and phoronids. 
    more » « less
  2. Bryozoans are mostly sessile colonial invertebrates that inhabit all kinds of aquatic ecosystems. Extant bryozoan species fall into two clades with one of them, Phylactolaemata, being the only exclusively freshwater clade. Phylogenetic relationships within the class Phylactolaemata have long been controversial owing to their limited distinguishable characteristics that reflect evolutionary relationships. Here, we present the first phylogenomic analysis of Phylactolaemata using transcriptomic data combined with dense taxon sampling of six families to better resolve the interrelationships and to estimate divergence time. Using maximum-likelihood and Bayesian inference approaches, we recovered a robust phylogeny for Phylactolaemata in which the interfamilial relationships are fully resolved. We show Stephanellidae is the sister taxon of all other phylactolaemates and confirm that Lophopodidae represents the second offshoot within the phylactolaemate tree. Plumatella fruticosa clearly falls outside Plumatellidae as previous investigations have suggested, and instead clusters with Pectinatellidae and Cristatellidae as the sister taxon of Fredericellidae. Our results demonstrate that cryptic speciation is very likely in F. sultana and in two species of Plumatella ( P. repens and P. casmiana ). Divergence time estimates show that Phylactolaemata appeared at the end of the Ediacaran and started to diverge in the Silurian, although confidence intervals were large for most nodes. The radiation of most extant phylactolaemate families occurred mainly in the Palaeogene and Neogene highlighting post-extinction diversification. 
    more » « less
  3. null (Ed.)