Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Dryland ecosystems cover 40% of our planet's land surface, support billions of people, and are responding rapidly to climate and land use change. These expansive systems also dominate core aspects of Earth's climate, storing and exchanging vast amounts of water, carbon, and energy with the atmosphere. Despite their indispensable ecosystem services and high vulnerability to change, drylands are one of the least understood ecosystem types, partly due to challenges studying their heterogeneous landscapes and misconceptions that drylands are unproductive “wastelands.” Consequently, inadequate understanding of dryland processes has resulted in poor model representation and forecasting capacity, hindering decision making for these at‐risk ecosystems. NASA satellite resources are increasingly available at the higher resolutions needed to enhance understanding of drylands' heterogeneous spatiotemporal dynamics. NASA's Terrestrial Ecology Program solicited proposals for scoping a multi‐year field campaign, of which Adaptation and Response in Drylands (ARID) was one of two scoping studies selected. A primary goal of the scoping study is to gather input from the scientific and data end‐user communities on dryland research gaps and data user needs. Here, we provide an overview of the ARID team's community engagement and how it has guided development of our framework. This includes an ARID kickoff meeting with over 300 participants held in October 2023 at the University of Arizona to gather input from data end‐users and scientists. We also summarize insights gained from hundreds of follow‐up activities, including from a tribal‐engagement focused workshop in New Mexico, conference town halls, intensive roundtables, and international engagements.more » « less
-
Monitoring and estimating drought impact on plant physiological processes over large regions remains a major challenge for remote sensing and land surface modeling, with important implications for understanding plant mortality mechanisms and predicting the climate change impact on terrestrial carbon and water cycles. The Orbiting Carbon Observatory 3 (OCO‐3), with its unique diurnal observing capability, offers a new opportunity to track drought stress on plant physiology. Using radiative transfer and machine learning modeling, we derive a metric of afternoon photosynthetic depression from OCO‐3 solar‐induced chlorophyll fluorescence (SIF) as an indicator of plant physiological drought stress. This unique diurnal signal enables a spatially explicit mapping of plants' physiological response to drought. Using OCO‐3 observations, we detect a widespread increasing drought stress during the 2020 southwest US drought. Although the physiological drought stress is largely related to the vapor pressure deficit (VPD), our results suggest that plants' sensitivity to VPD increases as the drought intensifies and VPD sensitivity develops differently for shrublands and grasslands. Our findings highlight the potential of using diurnal satellite SIF observations to advance the mechanistic understanding of drought impact on terrestrial ecosystems and to improve land surface modeling.more » « less
-
na (Ed.)Environmental observation networks, such as AmeriFlux, are foundational for monitoring ecosystem response to climate change, management practices, and natural disturbances; however, their effectiveness depends on their representativeness for the regions or continents. We proposed an empirical, time series approach to quantify the similarity of ecosystem fluxes across AmeriFlux sites. We extracted the diel and seasonal characteristics (i.e., amplitudes, phases) from carbon dioxide, water vapor, energy, and momentum fluxes, which reflect the effects of climate, plant phenology, and ecophysiology on the observations, and explored the potential aggregations of AmeriFlux sites through hierarchical clustering. While net radiation and temperature showed latitudinal clustering as expected, flux variables revealed a more uneven clustering with many small (number of sites < 5), unique groups and a few large (> 100) to intermediate (15–70) groups, highlighting the significant ecological regulations of ecosystem fluxes. Many identified unique groups were from under-sampled ecoregions and biome types of the International Geosphere-Biosphere Programme (IGBP), with distinct flux dynamics compared to the rest of the network. At the finer spatial scale, local topography, disturbance, management, edaphic, and hydrological regimes further enlarge the difference in flux dynamics within the groups. Nonetheless, our clustering approach is a data-driven method to interpret the AmeriFlux network, informing future cross-site syntheses, upscaling, and model-data benchmarking research. Finally, we highlighted the unique and underrepresented sites in the AmeriFlux network, which were found mainly in Hawaii and Latin America, mountains, and at under- sampled IGBP types (e.g., urban, open water), motivating the incorporation of new/unregistered sites from these groups.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract A frequently expressed viewpoint across the Earth science community is that global soil moisture estimates from satellite L‐band (1.4 GHz) measurements represent moisture only in a shallow surface layer (0–5 cm) and consequently are of limited value for studying global terrestrial ecosystems because plants use water from deeper rootzones. Using this argumentation, many observation‐based land surface studies avoid satellite‐observed soil moisture. Here, based on peer‐reviewed literature across several fields, we argue that such a viewpoint is overly limiting for two reasons. First, microwave soil emission depth considerations and statistical considerations of vertically correlated soil moisture information together indicate that L‐band measurements carry information about soil moisture extending below the commonly referenced 5 cm in many conditions. However, spatial variations of effective depths of representation remain uncertain. Second, in reviewing isotopic tracer field studies of plant water uptake, we find a prevalence of vegetation that primarily draws moisture from these upper soil layers. This is especially true for grasslands and croplands covering more than a third of global vegetated surfaces. Even some deeper‐rooted species (i.e., shrubs and trees) preferentially or seasonally draw water from the upper soil layers. Therefore, L‐band satellite soil moisture estimates are more relevant to global vegetation water uptake than commonly appreciated (i.e., relevant beyond only shallow soil processes like soil evaporation). Our commentary encourages the application of satellite soil moisture across a broader range of terrestrial hydrosphere and biosphere studies while urging more rigorous estimates of its effective depth of representation.more » « less
An official website of the United States government
