Abstract. Root-zone water storage capacity (Sr) – the maximum water volume available for vegetation uptake – bolsters ecosystem resilience to droughts and heatwaves, influences land–atmosphere exchange, and controls runoff and groundwater recharge. In land models, Sr serves as a critical parameter to simulate water availability for vegetation and its impact on processes like transpiration and soil moisture dynamics. However, Sr is difficult to measure, especially at large spatial scales, hindering an accurate understanding of many biophysical processes, such as photosynthesis, evapotranspiration, tree mortality, and wildfire risk. Here, we present a global estimate of Sr using measurements of total water storage (TWS) anomalies from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On satellite missions. We find that the median Sr value for global vegetated regions is at least 220±40 mm, which is over 50 % larger than the latest estimate derived from tracking storage change via water fluxes and 380 % larger than that calculated using a typical soil and rooting-depth parameterization. These findings reveal that plant-available water stores exceed the storage capacity of 2 m deep soil in nearly half of Earth's vegetated surface, representing a notably larger extent than previous estimates. Applying our Sr estimates in a global hydrological model improves evapotranspiration simulations compared to other Sr estimates across much of the globe, particularly during droughts, highlighting the robustness of our approach. Our study highlights the importance of continued refinement and validation of Sr estimates and provides a new observational approach for further exploring the impacts of Sr on water resource management and ecosystem sustainability.
more »
« less
Remotely Sensed Soil Moisture Can Capture Dynamics Relevant to Plant Water Uptake
Abstract A frequently expressed viewpoint across the Earth science community is that global soil moisture estimates from satellite L‐band (1.4 GHz) measurements represent moisture only in a shallow surface layer (0–5 cm) and consequently are of limited value for studying global terrestrial ecosystems because plants use water from deeper rootzones. Using this argumentation, many observation‐based land surface studies avoid satellite‐observed soil moisture. Here, based on peer‐reviewed literature across several fields, we argue that such a viewpoint is overly limiting for two reasons. First, microwave soil emission depth considerations and statistical considerations of vertically correlated soil moisture information together indicate that L‐band measurements carry information about soil moisture extending below the commonly referenced 5 cm in many conditions. However, spatial variations of effective depths of representation remain uncertain. Second, in reviewing isotopic tracer field studies of plant water uptake, we find a prevalence of vegetation that primarily draws moisture from these upper soil layers. This is especially true for grasslands and croplands covering more than a third of global vegetated surfaces. Even some deeper‐rooted species (i.e., shrubs and trees) preferentially or seasonally draw water from the upper soil layers. Therefore, L‐band satellite soil moisture estimates are more relevant to global vegetation water uptake than commonly appreciated (i.e., relevant beyond only shallow soil processes like soil evaporation). Our commentary encourages the application of satellite soil moisture across a broader range of terrestrial hydrosphere and biosphere studies while urging more rigorous estimates of its effective depth of representation.
more »
« less
- Award ID(s):
- 2025849
- PAR ID:
- 10467509
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 59
- Issue:
- 2
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Plant roots act as critical pathways of moisture from the subsurface to the atmosphere. Deep moisture uptake by plant roots can provide a seasonal buffer mechanism in regions with a well-defined dry season, such as the southern Amazon. Here, mature forests maintain transpiration (a critical source of atmospheric moisture in this part of the world) during drier months. Most existing state-of-the-art Earth system models do not have the necessary features to simulate subsurface-to-atmosphere moisture variations during dry-downs. These features include groundwater dynamics, a sufficiently deep soil column, dynamic root water uptake (RWU), and a fine model spatial resolution (<5 km). To address this, we present DynaRoot, a dynamic root water uptake scheme implemented in the Noah-Multiparameterization (Noah-MP) land surface model, a widely used model for studying kilometer-scale regional land surface processes. Our modifications include the implementation of DynaRoot, eight additional resolved soil layers reaching a depth of 20 mm, and soil properties that vary with depth. DynaRoot is computationally efficient and ideal for regional- or continental-scale climate simulations. We perform four 20-year uncoupled Noah-MP experiments for a region in the southern Amazon basin. Each experiment incrementally adds physical complexity. The experiments include the default Noah-MP with free drainage (FD), a case with an activated groundwater scheme that resolves water table variations (GW), a case with eight added soil layers and soil properties that vary with depth (SOIL), and a case with DynaRoot activated (ROOT). Our results show that DynaRoot allows mature forests in upland regions to avoid water stress during dry periods by taking up moisture from the deep vadose zone (where antecedent precipitation still drains downward). Conversely, RWU in valleys can access moisture from groundwater (while remaining constrained by the water table). Temporally, we capture a seasonal shift in RWU from shallower layers in wetter months to deeper soil layers in drier months, particularly over regions with dominant evergreen broadleaf (forest) vegetation. Compared to the control case, there is a domain-averaged increase in transpiration of about 29 % during dry months in the ROOT experiment. Critically, the ROOT experiment performs best in simulating the temporal evolution of dry-season transpiration using an observation-based ET (evapotranspiration) product as the reference. Future work will explore the effect of the DynaRoot uptake scheme on atmospheric variables in a coupled modeling framework.more » « less
-
Meinzer, Frederick (Ed.)Abstract Understanding how mixed-species forests uptake subsurface water sources is critical to projecting future forest water use and stress. Variation in root water uptake (RWU) depths and volumes is common among trees but it is unclear how it is affected by species identity, local water availability or neighboring tree species compositions. We evaluated the hypothesis that RWU depths and the age of water (i.e., time since water entered soils as precipitation) taken up by red maples (Acer rubrum) varied significantly between two forested plots, both containing red maples, similar soils, topography and hydrologic conditions, but having different neighboring tree species. We measured soil moisture contents as well as stable isotopes (δ2H, δ18O) in plant xylem water and soil moisture across two years. These data were used to calibrate process-based stand-level ecohydrological models for each plot to estimate species-level RWU depths. Model calibration suggested significant differences in red maple tree RWU depths, transpiration rates and the ages of water taken up by maples across the two stands. Maple trees growing with ash and white spruce relied on significantly deeper and older water from the soil profile than maple trees growing with birch and oak. The drought risk profile experienced by maple trees differed between the plots as demonstrated by strong correlations between precipitation and model simulated transpiration on a weekly time scale for maples taking up shallow soil moisture and a monthly time scale for maples reliant on deeper soil moisture. These findings carry significant implications for our understanding of water competition in mixed-species forests and for the representation of forest rooting strategies in hydrologic and earth systems models.more » « less
-
Passive microwave remote sensing of soil moisture is crucial for monitoring the Earth’s water cycle and surface dynamics. The penetration depth during this process is significant, as it influences the accuracy of retrieved soil moisture data. Within L-band remote sensing, tools such as the τ-z model interpret microwave emissions to estimate soil moisture, taking into account the complex interactions between soil and radiation. However, in validating these models against high-temporal-resolution, ground-based measurements, especially from extensive networks like the Terrestrial National Ecological Observatory Network (NEON), further research and validation efforts are needed. This study comprehensively validates the τ-z model’s ability to estimate the soil temperature sensing depth (zTeff) using data from the NEON and Soil Moisture Active Passive (SMAP) satellite missions. A harmonization process was conducted to align the spatial and temporal scales of the two datasets, enabling rigorous validation. We compared soil optical depth (τ)—a parameter capable of theoretically unifying sensing depth representations across wet soil (~0.05 m) to extreme dry/frozen conditions (e.g., up to ~1500 m in ice-equivalent scenarios)—and geometric depth (z) frameworks against outputs from the τ-z model and NEON’s in situ profiles. The results show that: (1) for the profiles that satisfy the monotonic assumption by the τ-z model, zTeff fits the prediction well at about 0.2 τ for the average; (2) Combining SMAP’s soil moisture, the τ-z model achieves high accuracy in estimating zTeff, with RMSD (0.05 m) and unRMSD (0.03 m), and correlations (0.67) between estimated and observed values. The findings are expected to advance remote sensing techniques in various fields, including agriculture, hydrology, and climate change research.more » « less
-
Abstract Drylands are critical in regulating global carbon sequestration, but the resiliency of these semi‐arid shrub, grassland and forest systems is under threat from global warming and intensifying water stress. We used synergistic satellite optical‐Infrared (IR) and microwave remote sensing observations to quantify plant‐to‐stand level vegetation water potentials and seasonal changes in dryland water stress in the southwestern U.S. Machine‐learning was employed to re‐construct global satellite microwave vegetation optical depth (VOD) retrievals to 500‐m resolution. The re‐constructed results were able to delineate diverse vegetation conditions undetectable from the original 25‐km VOD record, and showed overall favorable correspondence with in situ plant water potential measurements (R from 0.60 to 0.78). The VOD water potential estimates effectively tracked plant water storage changes from hydro‐climate variability over diverse sub‐regions. The re‐constructed VOD record improves satellite capabilities for monitoring the storage and movement of water across the soil‐vegetation‐atmosphere continuum in heterogeneous drylands.more » « less
An official website of the United States government

