skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 15 until 2:00 AM ET on Friday, January 16 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Scott, Stephen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Perception of limb position and motion combines sensory information from spindles in muscles that span one joint (monoarticulars) and two joints (biarticulars). This anatomical organization should create interactions in estimating limb position. We developed two models, one with only monoarticulars and one with both monoarticulars and biarticulars, to explore how biarticulars influence estimates of arm position in hand ( x, y) and joint ( shoulder, elbow) coordinates. In hand coordinates, both models predicted larger medial-lateral than proximal-distal errors, although the model with both muscle groups predicted that biarticulars would reduce this bias. In contrast, the two models made significantly different predictions in joint coordinates. The model with only monoarticulars predicted that errors would be uniformly distributed because estimates of angles at each joint would be independent. In contrast, the model that included biarticulars predicted that errors would be coupled between the two joints, resulting in smaller errors for combinations of flexion or extension at both joints and larger errors for combinations of flexion at one joint and extension at the other joint. We also carried out two experiments to examine errors made by human subjects during an arm position matching task in which a robot passively moved one arm to different positions and the subjects moved their other arm to mirror-match each position. Errors in hand coordinates were similar to those predicted by both models. Critically, however, errors in joint coordinates were only similar to those predicted by the model with monoarticulars and biarticulars. These results highlight how biarticulars influence perceptual estimates of limb position by helping to minimize medial-lateral errors. NEW & NOTEWORTHY It is unclear how sensory information from muscle spindles located within muscles spanning multiple joints influences perception of body position and motion. We address this issue by comparing errors in estimating limb position made by human subjects with predicted errors made by two musculoskeletal models, one with only monoarticulars and one with both monoarticulars and biarticulars. We provide evidence that biarticulars produce coupling of errors between joints, which help to reduce errors. 
    more » « less
  2. With increasing needs of fast and reliable commu- nication between devices, wireless communication techniques are rapidly evolving to meet such needs. Multiple input and output (MIMO) systems are one of the key techniques that utilize multiple antennas for high-throughput and reliable communication. However, increasing the number of antennas in communication also adds to the complexity of channel esti- mation, which is essential to accurately decode the transmitted data. Therefore, development of accurate and efficient channel estimation methods is necessary. We report the performance of machine learning-based channel estimation approaches to enhance channel estimation performance in high-noise envi- ronments. More specifically, bit error rate (BER) performance of 2 × 2 and 4 × 4 MIMO communication systems with space- time block coding model (STBC) and two neural network-based channel estimation algorithms is analyzed. Most significantly, the results demonstrate that a generalized regression neural network (GRNN) model matches BER results of a known-channel communication for 4 × 4 MIMO with 8-bit pilots, when trained in a specific signal to noise ratio (SNR) regime. Moreover, up to 9dB improvement in signal-to-noise ratio (SNR) for a target BER is observed, compared to least square (LS) channel estimation, especially when the model is trained in the low SNR regime. A deep artificial neural network (Deep ANN) model shows worse BER performance compared to LS in all tested environments. These preliminary results present an opportunity for achieving better performance in channel estimation through GRNN and highlight further research topics for deployment in the wild. 
    more » « less