Adaptive communication for Internet of Things (IoT) and Wireless Body Area Network (WBAN) technologies is becoming increasingly popular due to the large power-performance trade-offs and highly dynamic channel conditions. Path loss, low signal to noise ratio (SNR) in the channel and network congestion adversely affect the data communication, each of which can be taken care of using different strategies such as reducing the data rate (for reducing congestion), increasing the output power (for increased path loss) and application of error correction coding (ECC, for low SNR). In this paper, we present a digital-friendly Transceiver SoC consisting of an RF-DAC basedmore »
Neural Network-based Channel Estimation for 2x2 and 4x4 MIMO Communication in Noisy Channels
With increasing needs of fast and reliable commu- nication between devices, wireless communication techniques are rapidly evolving to meet such needs. Multiple input and output (MIMO) systems are one of the key techniques that utilize multiple antennas for high-throughput and reliable communication. However, increasing the number of antennas in communication also adds to the complexity of channel esti- mation, which is essential to accurately decode the transmitted data. Therefore, development of accurate and efficient channel estimation methods is necessary. We report the performance of machine learning-based channel estimation approaches to enhance channel estimation performance in high-noise envi- ronments. More specifically, bit error rate (BER) performance of 2 × 2 and 4 × 4 MIMO communication systems with space- time block coding model (STBC) and two neural network-based channel estimation algorithms is analyzed.
Most significantly, the results demonstrate that a generalized regression neural network (GRNN) model matches BER results of a known-channel communication for 4 × 4 MIMO with 8-bit pilots, when trained in a specific signal to noise ratio (SNR) regime. Moreover, up to 9dB improvement in signal-to-noise ratio (SNR) for a target BER is observed, compared to least square (LS) channel estimation, especially when the model is trained in the more »
- Award ID(s):
- 1731833
- Publication Date:
- NSF-PAR ID:
- 10075910
- Journal Name:
- International Balkan Conference on Communications and Networking
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Overcoming the conventional trade-off between throughput and bit error rate (BER) performance, versus computational complexity is a long-term challenge for uplink Multiple-Input Multiple-Output (MIMO) detection in base station design for the cellular 5G New Radio roadmap, as well as in next generation wireless local area networks. In this work, we present ParaMax, a MIMO detector architecture that for the first time brings to bear physics-inspired parallel tempering algorithmic techniques [28, 50, 67] on this class of problems. ParaMax can achieve near optimal maximum-likelihood (ML) throughput performance in the Large MIMO regime, Massive MIMO systems where the base station has additionalmore »
-
User demand for increasing amounts of wireless capacity continues to outpace supply, and so to meet this demand, significant progress has been made in new MIMO wireless physical layer techniques. Higher-performance systems now remain impractical largely only because their algorithms are extremely computationally demanding. For optimal performance, an amount of computation that increases at an exponential rate both with the number of users and with the data rate of each user is often required. The base station's computational capacity is thus becoming one of the key limiting factors on wireless capacity. QuAMax is the first large MIMO cloud-based radio accessmore »
-
The present work reports on the novel implementation of a miniaturized receiver for underwater networking merging a Piezoelectric Micromachined Ultrasonic Transducer (PMUT) array and signal conditioning circuitry in a single, packaged device. Tests in both a large water tank and a pool demonstrated that the system can attain large enough Signal-to-Noise Ratio (SNR) for communication at distances beyond two meters. An actual communication test, implementing an Orthogonal Frequency Division Multiplexing (OFDM) scheme, was used to characterize the performance of the link in terms of Bit Error Rate (BER) vs SNR. In comparison to previous work demonstrating high-data rate communication formore »
-
Emerging wireless technologies employ MIMO beamforming antenna arrays to improve channel Signal-to-Noise Ratio (SNR). The increased dynamic range of channel SNR values that can be accommodated, creates power stress on Radio Frequency (RF) electronic circuitry. To alleviate this, we propose an approach in which the circuitry along with other transmission coding parameters can be dynamically tuned in response to channel SNR and beam-steering angle to either minimize power consumption or maximize throughput in the presence of manufacturing process variations while meeting a specified Bit Error Rate (BER) limit. The adaptation control policy is learned online and is facilitated by informationmore »