skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Searcy, Jacob"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Earthquake early warning (EEW) systems aim to forecast the shaking intensity rapidly after an earthquake occurs and send warnings to affected areas before the onset of strong shaking. The system relies on rapid and accurate estimation of earthquake source parameters. However, it is known that source estimation for large ruptures in real‐time is challenging, and it often leads to magnitude underestimation. In a previous study, we showed that machine learning, HR‐GNSS, and realistic rupture synthetics can be used to reliably predict earthquake magnitude. This model, called Machine‐Learning Assessed Rapid Geodetic Earthquake model (M‐LARGE), can rapidly forecast large earthquake magnitudes with an accuracy of 99%. Here, we expand M‐LARGE to predict centroid location and fault size, enabling the construction of the fault rupture extent for forecasting shaking intensity using existing ground motion models. We test our model in the Chilean Subduction Zone with thousands of simulated and five real large earthquakes. The result achieves an average warning time of 40.5 s for shaking intensity MMI4+, surpassing the 34 s obtained by a similar GNSS EEW model. Our approach addresses a critical gap in existing EEW systems for large earthquakes by demonstrating real‐time fault tracking feasibility without saturation issues. This capability leads to timely and accurate ground motion forecasts and can support other methods, enhancing the overall effectiveness of EEW systems. Additionally, the ability to predict source parameters for real Chilean earthquakes implies that synthetic data, governed by our understanding of earthquake scaling, is consistent with the actual rupture processes.

     
    more » « less
  2. Abstract

    Low‐frequency earthquakes are a seismic manifestation of slow fault slip. Their emergent onsets, low amplitudes, and unique frequency characteristics make these events difficult to detect in continuous seismic data. Here, we train a convolutional neural network to detect low‐frequency earthquakes near Parkfield, CA using the catalog of Shelly (2017),https://doi.org/10.1002/2017jb014047as training data. We explore how varying model size and targets influence the performance of the resulting network. Our preferred network has a peak accuracy of 85% and can reliably pick low‐frequency earthquake (LFE) S‐wave arrival times on single station records. We demonstrate the abilities of the network using data from permanent and temporary stations near Parkfield, and show that it detects new LFEs that are not part of the Shelly (2017),https://doi.org/10.1002/2017jb014047catalog. Overall, machine‐learning approaches show great promise for identifying additional low‐frequency earthquake sources. The technique is fast, generalizable, and does not require sources to repeat.

     
    more » « less