skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Seifnashri, Sahand"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We discuss the exact non-invertible Kramers-Wannier symmetry of 1+1d lattice models on a tensor product Hilbert space of qubits. This symmetry is associated with a topological defect and a conserved operator, and the latter can be presented as a matrix product operator. Importantly, unlike its continuum counterpart, the symmetry algebra involves lattice translations. Consequently, it is not described by a fusion category. In the presence of this defect, the symmetry algebra involving parity/time-reversal is realized projectively, which is reminiscent of an anomaly. Different Hamiltonians with the same lattice non-invertible symmetry can flow in their continuum limits to infinitely many different fusion categories (with different Frobenius-Schur indicators), including, as a special case, the Ising CFT. The non-invertible symmetry leads to a constraint similar to that of Lieb-Schultz-Mattis, implying that the system cannot have a unique gapped ground state. It is either in a gapless phase or in a gapped phase with three (or a multiple of three) ground states, associated with the spontaneous breaking of the lattice non-invertible symmetry. 
    more » « less