skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Seki, Akiri"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In seismic regions, structures along the coast may be exposed to earthquake and tsunami loading during their service life. During the 2011 Great East Japan Earthquake, many structures survived the earthquake but failed due to the subsequent tsunami loading. This research aims to generate data about the effects of tsunami waves on coastal structures, however, conventional approaches have limitations when simulating structures interacting with hydrodynamics. Computational methods require experimental validation, but scaled experimental methods may not represent full-scale prototype response because of the unique similitude law governing the hydrodynamics versus the structural dynamics. Real-time hybrid simulation (RTHS) can alleviate the similitude limitations by partitioning the system subjected to structural- and hydrodynamics into physical and numerical sub-assemblies. The sub-assemblies interact through actuators and sensors in real time, which enables the application of individually applied similitude laws to each sub-assembly. Here, physical solitary waves and a very stiff cylindrical physical specimen were coupled with a numerical single degree-of-freedom (SDOF) oscillator via RTHS. In the NHERI Large Wave Flume at Oregon State University, breaking and broken solitary waves excited the physical specimen, whose natural period was then numerically manipulated. Results showed that the effects of wave-structure interaction depend on the duration of the wave loading and natural period of the SDOF system. 
    more » « less
    Free, publicly-accessible full text available August 29, 2026