Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Low-latency and low-power edge AI is crucial for Virtual Reality and Augmented Reality applications. Recent advances demonstrate that hybrid models, combining convolution layers (CNN) and transformers (ViT), often achieve a superior accuracy/performance tradeoff on various computer vision and machine learning (ML) tasks. However, hybrid ML models can present system challenges for latency and energy efficiency due to their diverse nature in dataflow and memory access patterns. In this work, we leverage architecture heterogeneity from Neural Processing Units (NPU) and Compute-In-Memory (CIM) and explore diverse execution schemas to efficiently execute these hybrid models. We introduce H4H-NAS, a two-stage Neural Architecture Search (NAS) framework to automate the design of efficient hybrid CNN/ViT models for heterogeneous edge systems featuring both NPU and CIM. We propose a two-phase incremental supernet training in our NAS framework to resolve gradient conflicts between sampled subnets caused by different types of blocks in a hybrid model search space. Our H4H-NAS approach is also powered by a performance estimator built with NPU performance results measured on real silicon, and CIM performance based on industry IPs. H4H-NAS searches hybrid CNN-ViT models with fine granularity and achieves significant (up to 1.34%) top-1 accuracy improvement on ImageNet. Moreover, results from our algorithm/hardware co-design reveal up to 56.08% overall latency and 41.72% energy improvements by introducing heterogeneous computing over baseline solutions. Overall, our framework guides the design of hybrid network architectures and system architectures for NPU+CIM heterogeneous systems.more » « lessFree, publicly-accessible full text available January 20, 2026
-
Spiking neural networks (SNNs) have received increasing attention due to their high biological plausibility and energy efficiency. The binary spike-based information propagation enables efficient sparse computation in event-based and static computer vision applications. However, the weight precision and especially the membrane potential precision remain as high-precision values (e.g., 32 bits) in state-of-the-art SNN algorithms. Each neuron in an SNN stores the membrane potential over time and typically updates its value in every time step. Such frequent read/write operations of high-precision membrane potential incur storage and memory access overhead in SNNs, which undermines the SNNs' compatibility with resource-constrained hardware. To resolve this inefficiency, prior works have explored the time step reduction and low-precision representation of membrane potential at a limited scale and reported significant accuracy drops. Furthermore, while recent advances in on-device AI present pruning and quantization optimization with different architectures and datasets, simultaneous pruning with quantization is highly under-explored in SNNs. In this work, we present SpQuant-SNN, a fully-quantized spiking neural network with ultra-low precision weights, membrane potential, and high spatial-channel sparsity, enabling the end-to-end low precision with significantly reduced operations on SNN. First, we propose an integer-only quantization scheme for the membrane potential with a stacked surrogate gradient function, a simple-yet-effective method that enables the smooth learning process of quantized SNN training. Second, we implement spatial-channel pruning with membrane potential prior, toward reducing the layer-wise computational complexity, and floating-point operations (FLOPs) in SNNs. Finally, to further improve the accuracy of low-precision and sparse SNN, we propose a self-adaptive learnable potential threshold for SNN training. Equipped with high biological adaptiveness, minimal computations, and memory utilization, SpQuant-SNN achieves state-of-the-art performance across multiple SNN models for both event-based and static image datasets, including both image classification and object detection tasks. The proposed SpQuant-SNN achieved up to 13× memory reduction and >4.7× FLOPs reduction with ~1.8% accuracy degradation for both classification and object detection tasks, compared to the SOTA baseline.more » « lessFree, publicly-accessible full text available September 4, 2025
-
Free, publicly-accessible full text available August 1, 2025
-
Free, publicly-accessible full text available June 30, 2025
-
Deep neural networks (DNNs) have experienced unprecedented success in a variety of cognitive tasks due to which there has been a move to deploy DNNs in edge devices. DNNs are usually comprised of multiply-and-accumulate (MAC) operations and are both data and compute intensive. In-memory computing (IMC) methodologies have shown significant energy efficiency and throughput benefits for DNN workloads by reducing data movement and eliminating memory reads. Weight pruning in DNNs can further improve the energy/throughput of DNN hardware through reduced storage and compute. Recent IMC works [1]–[3], [6] have not explored such sparse compression techniques unlike ASIC counterparts to enable storage benefits and compute skipping. A recent work [4] attempted to exploit this by compressing weights using a binary map and a custom compression format. This is sub-optimal because the implementation requires a complex routing mechanism (butterfly routing), additional compute to decode compressed weights and has limited flexibility in supporting different sparse encodings. Fig. 1 illustrates our motivations and the challenges for implementing weight compression in digital IMC designs and the need for a new methodology to enable sparse compute directly on compressed weights. In this work, we present a novel sparsity-integrated IMC (SP-IMC) macro in 28nm CMOS which, for the first time, utilizes three popular sparse compression formats, i.e., coordinate representation (COO), run length encoding (RL) and N:m sparsity [7] all along the matrix column direction with tunable precisions. SP-IMC stores and directly processes the sparse compressed weights in the macro, achieving higher storage density, reduction in re-write operations to the macro and higher overall energy efficiency.more » « lessFree, publicly-accessible full text available April 21, 2025
-
This work presents the first resistive random access memory (RRAM)-based compute-in-memory (CIM) macro design tailored for genome processing. We analyze and demonstrate two key types of genome processing applications using our developed CIM chip prototype: the state-of-the-art (SOTA) burrows–wheeler transform (BWT)-based DNA short- read alignment and alignment-free mRNA quantification. Our CIM macro is designed and optimized to support the major functions essential to these algorithms, e.g., parallel XNOR operations, count, addition, and parallel bit-wise and operations. The proposed CIM macro prototype is fabricated with monolithic integration of HfO2 RRAM and 65-nm CMOS, achieving 2.07 TOPS/W (tera-operations per second per watt) and 2.12 G suffixes/J (suffixes per joule) at 1.0 V, which is the most energy-efficient solution to date for genome processing.more » « lessFree, publicly-accessible full text available July 1, 2025
-
We present a fully digital multiply and accumulate (MAC) in-memory computing (IMC) macro demonstrating one of the fastest flexible precision integer-based MACs to date. The design boasts a new bit-parallel architecture enabled by a 10T bit-cell capable of four AND operations and a decomposed precision data flow that decreases the number of shift–accumulate operations, bringing down the overall adder hardware cost by 1.57× while maintaining 100% utilization for all supported precision. It also employs a carry save adder tree that saves 21% of adder hardware. The 28-nm prototype chip achieves a speed-up of 2.6× , 10.8× , 2.42× , and 3.22× over prior SoTA in 1bW:1bI, 1bW:4bI, 4bW:4bI, and 8bW:8bI MACs, respectively.more » « less
-
Contrastive learning (CL) has been widely investigated with various learning mech- anisms and achieves strong capability in learning representations of data in a self-supervised manner using unlabeled data. A common fashion of contrastive learning on this line is employing large-sized encoders to achieve comparable performance as the supervised learning counterpart. Despite the success of the labelless training, current contrastive learning algorithms failed to achieve good performance with lightweight (compact) models, e.g., MobileNet, while the re- quirements of the heavy encoders impede the energy-efficient computation, espe- cially for resource-constrained AI applications. Motivated by this, we propose a new self-supervised CL scheme, named SACL-XD, consisting of two technical components, Slimmed Asymmetrical Contrastive Learning (SACL) and Cross- Distillation (XD), which collectively enable efficient CL with compact models. While relevant prior works employed a strong pre-trained model as the teacher of unsupervised knowledge distillation to a lightweight encoder, our proposed method trains CL models from scratch and outperforms them even without such an expensive requirement. Compared to the SoTA lightweight CL training (dis- tillation) algorithms, SACL-XD achieves 1.79% ImageNet-1K accuracy improve- ment on MobileNet-V3 with 64⇥ training FLOPs reduction. Code is available at https://github.com/mengjian0502/SACL-XD.more » « less